914 research outputs found
Effects of spatial size, lattice doubling and source operator on the hadron spectrum with dynamical staggered quarks
We have extended our previous study of the lattice QCD spectrum with 2
flavors of staggered dynamical quarks at and and 0.01
to larger lattices, with better statistics and with additional sources for the
propagators. The additional sources allowed us to estimate the mass
and to measure the masses of all mesons whose operators are local in time.
These mesons show good evidence for flavor symmetry restoration, except for the
masses of the Goldstone and non-Goldstone pions. PCAC is observed in that
, and is estimated. Use of undoubled lattices
removes problems with the pion propagator found in our earlier work. Previously
we found a large change in the nucleon mass at a quark mass of when
we increased the spatial size from 12 to 16. No such effect is observed at the
larger quark mass, . Two kinds of wall source were used, and we
have found difficulties in getting consistent results for the nucleon mass
between the two sources.Comment: 30 pages PostScript fil
Hadron Spectrum in QCD with Valence Wilson Fermions and Dynamical Staggered Fermions at $6/g^2=5.6
We present an analysis of hadronic spectroscopy for Wilson valence quarks
with dynamical staggered fermions at lattice coupling at
sea quark mass and 0.025, and of Wilson valence quarks in quenched
approximation at and 5.95, both on lattices. We
make comparisons with our previous results with dynamical staggered fermions at
the same parameter values but on lattices doubled in the temporal
direction.Comment: 32 page
The Weakly Coupled Gross-Neveu Model with Wilson Fermions
The nature of the phase transition in the lattice Gross-Neveu model with
Wilson fermions is investigated using a new analytical technique. This involves
a new type of weak coupling expansion which focuses on the partition function
zeroes of the model. Its application to the single flavour Gross-Neveu model
yields a phase diagram whose structure is consistent with that predicted from a
saddle point approach. The existence of an Aoki phase is confirmed and its
width in the weakly coupled region is determined. Parity, rather than chiral
symmetry breaking naturally emerges as the driving mechanism for the phase
transition.Comment: 15 pages including 1 figur
QCD thermodynamics with two flavors of Wilson quarks at N_t=6
We report on a study of hadron thermodynamics with two flavors of Wilson
quarks on 12^3x6 lattices. We have studied the crossover between the high and
low temperature regimes for three values of the hopping parameter, kappa=0.16,
0.17, and 0.18. At each of these values of kappa we have carried out spectrum
calculations on 12^3x24 lattices for two values of the gauge coupling in the
vicinity of the crossover in order to set an energy scale for our
thermodynamics calculations and to determine the critical value of the gauge
coupling for which the pion and quark masses vanish. For kappa=0.17 and 0.18 we
find coexistence between the high and low temperature regimes over 1,000
simulation time units indicating either that the equilibration time is
extremely long or that there is a possibility of a first order phase
transition. The pion mass is large at the crossover values of the gauge
coupling, but the crossover curve has moved closer to the critical curve along
which the pion and quark masses vanish, than it was on lattices with four time
slices. In addition, values of the dimensionless quantity T_c/m_rho are in
closer agreement with those for staggered quarks than was the case at N_t=4. (A
POSTSCRIPT VERSION OF THIS PAPER IS AVAILABLE BY ANONYMOUS FTP FROM
sarek.physics.ucsb.edu (128.111.8.250) IN THE FILE pub/wilson_thermo.ps)Comment: 24 page
Fermion-scalar interactions with domain wall fermions
Domain wall fermions are defined on a lattice with an extra direction the
size of which controls the chiral properties of the theory. When gauge fields
are coupled to domain wall fermions the extra direction is treated as an
internal flavor space. Here it is found that this is not the case for scalar
fields. Instead, the interaction takes place only along the link that connects
the boundaries of the extra direction. This reveals a richness in the way
different spin particles are coupled to domain wall fermions. As an
application, 4-Fermi models are studied using large N techniques and the
results are supported by numerical simulations with N=2. It is found that the
chiral properties of domain wall fermions in these models are good across a
large range of couplings and that a phase with parity-flavor broken symmetry
can develop for negative bare masses if the number of sites along the extra
direction is finite.Comment: LaTeX, 17 pages, 8 eps figures; comment regarding the width of Aoki
phase added in sec. 3; references adde
Properties of the a1 Meson from Lattice QCD
We determine the mass and decay constant of the meson using Monte Carlo
simulation of lattice QCD. We find MeV and , in good agreement with experiment.Comment: 9 page uu-encoded compressed postscript file. version appearing in
Phys. Rev. Lett. 74 (1995) 459
Light Quark Masses from Lattice QCD
We present estimates of the masses of light quarks using lattice data. Our
main results are based on a global analysis of all the published data for
Wilson, Sheikholeslami-Wohlert (clover), and staggered fermions, both in the
quenched approximation and with dynamical flavors. We find that the
values of masses with the various formulations agree after extrapolation to the
continuum limit for the theory. Our best estimates, in the MSbar scheme
at , are \mbar=3.4 +- 0.4 +- 0.3 MeV and in the quenched approximation. The results, \mbar = 2.7 +- 0.3 +-
0.3 MeV and , are preliminary. (A linear
extrapolation in would further reduce these estimates for the physical
case of three dynamical flavors.) These estimates are smaller than
phenomenological estimates based on sum rules, but maintain the ratios
predicted by chiral perturbation theory. The new results have a significant
impact on the extraction of from the Standard Model. Using
the same lattice data we estimate the quark condensate using the
Gell-Mann-Oakes-Renner relation. Again the three formulations give consistent
results after extrapolation to , and the value turns out to be
correspondingly larger, roughly preserving m_s \vev{\bar \psi \psi}.Comment: 32 pages. Package submitted in uufiles format: unpack and tex
paper.tex. Modified "axis" source for figures also included. Latex2e
document. Uncomment hyperref if available. This is the final published
versio
Coupling the Deconfining and Chiral Transitions
The Polyakov loop and the chiral condensate are used as order parameters to
explore analytically the possible phase structure of finite temperature QCD.
Nambu-Jona-Lasinio models in a background temporal gauge field are combined
with a Polyakov loop potential in a form suitable for both the lattice and the
continuum. Three possible behaviors are found: a first-order transition, a
second-order transition, and a region with both transitions.Comment: 4 pages, LaTeX, 4 Postscript Figures, uuencoded, Contribution to
Lattice 95 Conference Proceeding
Spontaneous Flavor and Parity Breaking with Wilson Fermions
We discuss the phase diagram of Wilson fermions in the -- plane for
two-flavor QCD. We argue that, as originally suggested by Aoki, there is a
phase in which flavor and parity are spontaneously broken. Recent numerical
results on the spectrum of the overlap Hamiltonian have been interpreted as
evidence against Aoki's conjecture. We show that they are in fact consistent
with the presence of a flavor-parity broken ``Aoki phase''. We also show how,
as the continuum limit is approached, one can study the lattice theory using
the continuum chiral Lagrangian supplemented by additional terms proportional
to powers of the lattice spacing. We find that there are two possible phase
structures at non-zero lattice spacing: (1) there is an Aoki phase of width
with two massless Goldstone pions; (2) there is no
symmetry breaking, and all three pions have an equal non-vanishing mass of
order . Present numerical evidence suggests that the former option is
realized for Wilson fermions. Our analysis then predicts the form of the pion
masses and the flavor-parity breaking condensate within the Aoki phase. Our
analysis also applies for non-perturbatively improved Wilson fermions.Comment: 22 pages, LaTeX, 5 figures (added several references and a comment
Two-Flavor Staggered Fermion Thermodynamics at N_t = 12
We present results of an ongoing study of the nature of the high temperature
crossover in QCD with two light fermion flavors. These results are obtained
with the conventional staggered fermion action at the smallest lattice spacing
to date---approximately 0.1 fm. Of particular interest are a study of the
temperature of the crossover a determination of the induced baryon charge and
baryon susceptibility, the scalar susceptibility, and the chiral order
parameter, used to test models of critical behavior associated with chiral
symmetry restoration. From our new data and published results for N_t = 4, 6,
and 8, we determine the QCD magnetic equation of state from the chiral order
parameter using O(4) and mean field critical exponents and compare it with the
corresponding equation of state obtained from an O(4) spin model and mean field
theory. We also present a scaling analysis of the Polyakov loop, suggesting a
temperature dependent ``constituent quark free energy.''Comment: LaTeX 25 pages, 15 Postscript figure
- …