We report on a study of hadron thermodynamics with two flavors of Wilson
quarks on 12^3x6 lattices. We have studied the crossover between the high and
low temperature regimes for three values of the hopping parameter, kappa=0.16,
0.17, and 0.18. At each of these values of kappa we have carried out spectrum
calculations on 12^3x24 lattices for two values of the gauge coupling in the
vicinity of the crossover in order to set an energy scale for our
thermodynamics calculations and to determine the critical value of the gauge
coupling for which the pion and quark masses vanish. For kappa=0.17 and 0.18 we
find coexistence between the high and low temperature regimes over 1,000
simulation time units indicating either that the equilibration time is
extremely long or that there is a possibility of a first order phase
transition. The pion mass is large at the crossover values of the gauge
coupling, but the crossover curve has moved closer to the critical curve along
which the pion and quark masses vanish, than it was on lattices with four time
slices. In addition, values of the dimensionless quantity T_c/m_rho are in
closer agreement with those for staggered quarks than was the case at N_t=4. (A
POSTSCRIPT VERSION OF THIS PAPER IS AVAILABLE BY ANONYMOUS FTP FROM
sarek.physics.ucsb.edu (128.111.8.250) IN THE FILE pub/wilson_thermo.ps)Comment: 24 page