13,086 research outputs found

    Mode 1 delamination growth in adhesively bonded joints under static and fatigue loads

    Get PDF
    The objective of this investigation was to characterize the pure mode 1 delamination growth in metal to metal adhesively bonded joints under static and fatigue loading conditions, using FM 73 adhesive. Double cantilever beam specimens (DCB) were used for pure mode 1 tests. Aluminum 2024-T3 adherends were bonded with FM 73 adhesive. Delamination was introduced during fabrication by inserting a Teflon film between the two adherends. The mode 1 strain energy release rate G sub I sub c was obtained directly from static DCB tests conducted in accordance with the ASTM designation D1876-12. Constant amplitude fatigue tests on DCB specimens were conducted to determine the relationship between delamination growth rate da/dN and strain energy release rate G sub I sub c for a pure mode 1 delamination growth. It is found that the debond propagation rate in adhesive joints using FM 73 is more sensitive to errors in design load than is typical crack growth rate in metallic structures

    Large negative magnetoresistance in a ferromagnetic shape memory alloy : Ni_{2+x}Mn_{1-x}Ga

    Full text link
    5% negative magnetoresistance (MR) at room temperature has been observed in bulk Ni_{2+x}Mn_{1-x}Ga. This indicates the possibility of using Ni_{2+x}Mn_{1-x}Ga as magnetic sensors. We have measured MR in the ferromagnetic state for different compositions (x=0-0.2) in the austenitic, pre-martensitic and martensitic phases. MR is found to increase with x. While MR for x=0 varies almost linearly in the austenitic and pre-martensitic phases, in the martensitic phase it shows a cusp-like shape. This has been explained by the changes in twin and domain structures in the martensitic phase. In the austenitic phase, which does not have twin structure, MR agrees with theory based on s-d scattering model.Comment: 3 pages, 3 figures, Appl. Phys. Lett 86, 202508 (2005

    Quantum Gravity Equation In Schroedinger Form In Minisuperspace Description

    Get PDF
    We start from classical Hamiltonian constraint of general relativity to obtain the Einstein-Hamiltonian-Jacobi equation. We obtain a time parameter prescription demanding that geometry itself determines the time, not the matter field, such that the time so defined being equivalent to the time that enters into the Schroedinger equation. Without any reference to the Wheeler-DeWitt equation and without invoking the expansion of exponent in WKB wavefunction in powers of Planck mass, we obtain an equation for quantum gravity in Schroedinger form containing time. We restrict ourselves to a minisuperspace description. Unlike matter field equation our equation is equivalent to the Wheeler-DeWitt equation in the sense that our solutions reproduce also the wavefunction of the Wheeler-DeWitt equation provided one evaluates the normalization constant according to the wormhole dominance proposal recently proposed by us.Comment: 11 Pages, ReVTeX, no figur

    Practical Problems in the Manufacture of Alloy Steel

    Get PDF
    DURING World War II, when the availability of alloy steels from abroad was poor, attempts were made to have makeshift indigenous production. Pioneers in the field were the Tata Iron & Steel Co.Ltd. Tatas started making alloy steels a little over two decades hack for the construction of the new Howrah Bridge, when they patented their ' Tiscor ' steel - a low-alloy constr-uctional steel with approximately 1 per cent chrome and 0.5 per cent Cu, having better resistance to atmo-sphere corrosion than ordinary mild steel. A major part of the steel structure of the Howrah Bridge is fabri- cated from Tatas' 'Tiscor' steel

    Time in Quantum Gravity

    Get PDF
    The Wheeler-DeWitt equation in quantum gravity is timeless in character. In order to discuss quantum to classical transition of the universe, one uses a time prescription in quantum gravity to obtain a time contained description starting from Wheeler-DeWitt equation and WKB ansatz for the WD wavefunction. The approach has some drawbacks. In this work, we obtain the time-contained Schroedinger-Wheeler-DeWitt equation without using the WD equation and the WKB ansatz for the wavefunction. We further show that a Gaussian ansatz for SWD wavefunction is consistent with the Hartle-Hawking or wormhole dominance proposal boundary condition. We thus find an answer to the small scale boundary conditions.Comment: 12 Pages, LaTeX, no figur

    The Topology of Parabolic Character Varieties of Free Groups

    Full text link
    Let G be a complex affine algebraic reductive group, and let K be a maximal compact subgroup of G. Fix elements h_1,...,h_m in K. For n greater than or equal to 0, let X (respectively, Y) be the space of equivalence classes of representations of the free group of m+n generators in G (respectively, K) such that for each i between 1 and m, the image of the i-th free generator is conjugate to h_i. These spaces are parabolic analogues of character varieties of free groups. We prove that Y is a strong deformation retraction of X. In particular, X and Y are homotopy equivalent. We also describe explicit examples relating X to relative character varieties.Comment: 16 pages, version 2 includes minor revisions and some modified proofs, accepted for publication in Geometriae Dedicat

    Dressed projectile charge state dependence of differential electron emission from Ne atom

    Get PDF
    We study the projectile charge state dependence of doubly differential electron emission cross section (DDCS) in ionization of Ne under the impact of dressed and bare oxygen ions. Experimental DDCS results measured at different angles are compared with the calculations based on a CDW-EIS approximation using the GSZ model potential to describe projectile active-electron interaction. This prescription gives an overall very good agreement. In general a deviation from the q2-law was observed in the DDCS. The observations crudely identify the dominance of different projectile electron loss mechanisms at certain electron energy range.Fil: Biswas, S.. Tata Institute of Fundamental Research; IndiaFil: Monti, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Rivarola, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Tribedi, L. C.. Tata Institute of Fundamental Research; Indi
    corecore