31 research outputs found

    Energy-efficient hybrid spintronic-straintronic reconfigurable bit comparator

    Full text link
    We propose a reconfigurable bit comparator implemented with a nanowire spin valve whose two contacts are magnetostrictive with bistable magnetization. Reference and input bits are "written" into the magnetization states of the two contacts with electrically generated strain and the spin-valve's resistance is lowered if they match. Multiple comparators can be interfaced in parallel with a magneto-tunneling junction to determine if an N-bit input stream matches an N-bit reference stream bit by bit. The system is robust against thermal noise at room temperature and a 16-bit comparator can operate at roughly 416 MHz while dissipating at most 420 aJ per cycle.Comment: Submitted to Applied Physics Letters. Version 1 ignored the energy dissipation in the passive resistors since they were very high. However, high resistances increase the RC time constant associated with charging. In version 2, the RC time constant has been reduced at the expense of increased energy dissipation, but the latter is still very small in absolute term

    Hybrid straintronics-spintronics: Energy-efficient non-volatile devices for Boolean and non-Boolean computation

    Get PDF
    Research in future generation computing is focused on reducing energy dissipation while maintaining the switching speed in a binary operation to continue the current trend of increasing transistor-density according to Moore’s law. Unlike charge-based CMOS technology, spin-based nanomagnetic technology, based on switching bistable magnetization of single domain shape-anisotropic nanomagnets, has the potential to achieve ultralow energy dissipation due to the fact that no charge motion is directly involved in switching. However, switching of magnetization has not been any less dissipative than switching transistors because most magnet switching schemes involve generating a current to produce a magnetic field, or spin transfer torque or domain wall motion to switch magnetization. Current-induced switching invariably dissipates an exorbitant amount of energy in the switching circuit that nullifies any energy advantage that a magnet may have over a transistor. Magnetoelastic switching (switching the magnetization of a magnetostrictive magnet with voltage generated stress) is an unusual switching paradigm where the dissipation turns out to be merely few hundred kT per switching event – several orders of magnitude less than that encountered in current-based switching. A fundamental obstacle, though, is to deterministically switch the magnetization of a nanomagnet between two stable states that are mutually anti-parallel with stress alone. In this work, I have investigated ways to mitigate this problem. One popular approach to flip the magnetizations of a nanomagnet is to pass a spin polarized current through it that transfers spin angular moment from the current to the electrons in the magnet, thereby switching their spins and ultimately the magnet’s magnetization. This approach – known as spin transfer torque (STT) – is very dissipative because of the enormous current densities needed to switch magnets, We, therefore, devised a mixed mode technique to switch magnetization with a combination of STT and stress to gain both energy efficiency from stress and deterministic 180o switching from STT. This approach reduces the total energy dissipation by roughly one order of magnitude. We then extended this idea to find a way to deterministically flip magnetization with stress alone. Sequentially applying stresses along two skewed axes, a complete 180o switching can be achieved. These results have been verified with stochastic Landau-Lifshitz-Gilbert simulation in the presence of thermal noise. The 180o switching makes it possible to develop a genre of magneto-elastic memory where bits are written entirely with voltage generated stress with no current flow. They are extremely energy-efficient. In addition to memory devices, a universal NAND logic device has been proposed which satisfies all the essential characteristics of a Boolean logic gate. It is non-volatile unlike transistor based logic gates in the sense that that gate can process binary inputs and store the output (result) in the magnetization states of magnets, thereby doubling as both logic and memory. Such dual role elements can spawn non-traditional non-von-Neumann architectures without the processor and memory partition that reduces energy efficiency and introduces additional errors. A bit comparator is also designed, which happens to be all straintronic, yet reconfigurable. Moreover, a straintronic spin neuron is designed for neural computing architecture that dissipates orders of magnitude less energy than its CMOS based counterparts. Finally, an experiment has been performed to demonstrate a complete 180o switching of magnetization in a shape anisotropic magnetostrictive Co nanomagnet using voltage generated stress. The device is synthesized with nano-fabrication techniques namely electron beam lithography, electron beam evaporation, and lift off. The experimental results vindicate our proposal of applying sequential stress along two skewed axes to reverse magnetization with stress and therefore, provide a firm footing to magneto-elastic memory technology

    Acoustically assisted spin-transfer-torque switching of nanomagnets: An energy-efficient hybrid writing scheme for non-volatile memory

    Get PDF
    We show that the energy dissipated to write bits in spin-transfer-torque random access memory can be reduced by an order of magnitude if a surface acoustic wave (SAW) is launched underneath the magneto-tunneling junctions (MTJs) storing the bits. The SAW-generated strain rotates the magnetization of every MTJs\u27 soft magnet from the easy towards the hard axis, whereupon passage of a small spin-polarized current through a target MTJ selectively switches it to the desired state with \u3e 99.99% probability at room temperature, thereby writing the bit. The other MTJs return to their original states at the completion of the SAW cycle

    Energy-efficient magnetoelastic non-volatile memory

    Get PDF
    We propose an improved scheme for low-power writing of binary bits in non-volatile (multiferroic) magnetic memory with electrically generated mechanical stress. Compared to an earlier idea [N. Tiercelin et al., J. Appl. Phys. 109, 07D726 (2011)], our scheme improves distinguishability between the stored bits when the latter are read with magneto-tunneling junctions. More importantly, the write energy dissipation and write error rate are reduced significantly if the writing speed is kept the same. Such a scheme could be one of the most energy-efficient approaches to writing bits in magnetic non-volatile memory. (C) 2014 AIP Publishing LLC
    corecore