27 research outputs found

    Spatial and temporal patterns of distribution of the gap junction protein connexin43 during mouse gastrulation and organogenesis

    Get PDF
    Connexin43 (Cx43) is a member of the family of channel-forming proteins that make up the gap junction and are believed to provide pathways for cell-cell exchange of developmental signals. We have used immunofluorescence and confocal microscopy to characterize the patterns of distribution of Cx43 in postimplantation mouse embryos representing stages of development extending through gastrulation and the major period of organogenesis [through 13.5 days post coitum (dpc)]. We find that Cx43 is expressed early after implantation by the undifferentiated, pluripotent cells of the primitive embryonic ectoderm from which all tissues of the fetus are believed to be derived. As cells become committed to particular developmental pathways, there is a progressive restriction of Cx43 to specific areas and organ systems. The patterns are complex and not limited by germ layer of origin, although there is a clear preference for expression in ectodermal and, to a lesser extent, mesodermal derivatives. Expression in lens, retina, kidney, brain, pineal and pituitary glands is initiated early in organogenesis. In heart, the first clear signal for Cx43 appears in the ventricle at about 10 dpc and is only subsequently detected in the atrium at about 13-13.5 dpc. Particularly intriguing with regard to functional implications is the high level expression observed at sites of inductive interaction; the eye lens and optic cup, the infundibulum and the apical ectodermal ridge of the limb bud

    Up-and-coming Radiotracers for Imaging Pain Generators

    Get PDF
    Chronic musculoskeletal pain is among the most highly prevalent diseases worldwide. Managing patients with chronic pain remains very challenging because current imaging techniques focus on morphological causes of pain that can be inaccurate and misleading. Moving away from anatomical constructs of disease, molecular imaging has emerged as a method to identify diseases according to their molecular, physiologic, or cellular signatures that can be applied to the variety of biomolecular changes that occur in nociception and pain processing and therefore have tremendous potential for precisely pinpointing the source of a patient's pain. Several molecular imaging approaches to image the painful process are now available, including imaging of voltage-gated sodium channels, calcium channels, hypermetabolic processes, the substance P receptor, the sigma-1 receptor, and imaging of macrophage trafficking. This article provides an overview of promising molecular imaging approaches for the imaging of musculoskeletal pain with a focus on preclinical methods.</p

    Magnetic Resonance Reporter Gene Imaging

    Get PDF
    Molecular imaging has undergone an explosive advancement in recent years, due to the tremendous research efforts made to understand and visualize biological processes. Molecular imaging by definition assesses cellular and molecular processes in living subjects, with the targets of following metabolic, genomic, and proteomic events. Furthermore, reporter gene imaging plays a central role in this field. Many different approaches have been used to visualize genetic events in living subjects, such as, optical, radionuclide, and magnetic resonance imaging. Compared with the other techniques, magnetic resonance (MR)-based reporter gene imaging has not occupied center stage, despite its superior three-dimensional depictions of anatomical details. In this article, the authors review the principles and applications of various types of MR reporter gene imaging technologies and discuss their advantages and disadvantages

    COVID-19 lockdown induced changes in NO2 levels across India observed by multi-satellite and surface observations

    Get PDF
    © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.We have estimated the spatial changes in NO 2levels over different regions of India during the COVID-19 lockdown (25 March-3 May 2020) using the satellite-based tropospheric column NO 2observed by the Ozone Monitoring Instrument (OMI) and the Tropospheric Monitoring Instrument (TROPOMI), as well as surface NO 2concentrations obtained from the Central Pollution Control Board (CPCB) monitoring network. A substantial reduction in NO 2levels was observed across India during the lockdown compared to the same period during previous business-as-usual years, except for some regions that were influenced by anomalous fires in 2020. The reduction (negative change) over the urban agglomerations was substantial (~20 %-40 %) and directly proportional to the urban size and population density. Rural regions across India also experienced lower NO 2values by ~15 %-25 %. Localised enhancements in NO 2associated with isolated emission increase scattered across India were also detected. Observed percentage changes in satellite and surface observations were consistent across most regions and cities, but the surface observations were subject to larger variability depending on their proximity to the local emission sources. Observations also indicate NO 2enhancements of up to~25%during the lockdown associated with fire emissions over the north-east of India and some parts of the central regions. In addition, the cities located near the large fire emission sources show much smaller NO 2reduction than other urban areas as the decrease at the surface was masked by enhancement in NO 2due to the transport of the fire emissions.Peer reviewedFinal Published versio

    <it>In vivo</it> USPIO magnetic resonance imaging shows that minocycline mitigates macrophage recruitment to a peripheral nerve injury

    No full text
    <p>Abstract</p> <p>Background</p> <p>Minocycline has proven anti-nociceptive effects, but the mechanism by which minocycline delays the development of allodynia and hyperalgesia after peripheral nerve injury remains unclear. Inflammatory cells, in particular macrophages, are critical components of the response to nerve injury. Using ultrasmall superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI) to monitor macrophage trafficking, the purpose of this project is to determine whether minocycline modulates macrophage trafficking to the site of nerve injury <it>in vivo</it> and, in turn, results in altered pain thresholds.</p> <p>Results</p> <p>Animal experiments were approved by Stanford IACUC. A model of neuropathic pain was created using the Spared Nerve Injury (SNI) model that involves ligation of the left sciatic nerve in the left thigh of adult Sprague–Dawley rats. Animals with SNI and uninjured animals were then injected with/without USPIOs (300 μmol/kg IV) and with/without minocycline (50 mg/kg IP). Bilateral sciatic nerves were scanned with a volume coil in a 7 T magnet 7 days after USPIO administration. Fluid-sensitive MR images were obtained, and ROIs were placed on bilateral sciatic nerves to quantify signal intensity. Pain behavior modulation by minocycline was measured using the Von Frey filament test. Sciatic nerves were ultimately harvested at day 7, fixed in 10% buffered formalin and stained for the presence of iron oxide-laden macrophages. Behavioral measurements confirmed the presence of allodynia in the neuropathic pain model while the uninjured and minocycline-treated injured group had significantly higher paw withdrawal thresholds (p < 0.011). Decreased MR signal is observed in the SNI group that received USPIOs (3.3+/−0.5%) compared to the minocycline-treated SNI group that received USPIOs (15.2+/−4.5%) and minocycline-treated group that did not receive USPIOs (41.2+/−2.3%) (p < 0.04). Histology of harvested sciatic nerve specimens confirmed the presence USPIOs at the nerve injury site in the SNI group without minocycline treatment.</p> <p>Conclusion</p> <p>Animals with neuropathic pain in the left hindpaw show increased trafficking of USPIO-laden macrophages to the site of sciatic nerve injury. Minocycline to retards the migration of macrophages to the nerve injury site, which may partly explain its anti-nociceptive effects. USPIO-MRI is an effective <it>in vivo</it> imaging tool to study the role of macrophages in the development of neuropathic pain.</p

    Development and Validation of TLC of Flavonoid from the Ethanolic Extract of Plant Enhydra fluctuans

    No full text
    Thin layer chromatography is a technique or an analytical tool to separate the bioactive compound from the mixture of components. In current research work special attention was given to develop specific solvent system and to validate the principle of separation of Flavonoid. The ethanolic extract of plant namely Helencha (in Bengali) was selected for such purpose. After several trials, the presence of Flavonoid which was confirmed by qualitative evaluation and was sepahjvvrated successfully under this study and the process was validated under the circumstances of ICH Guideline. The plant not only contained Flavonoid but there were the presence of little quantity of Alkaloid, Saponin and Tannins also. Due to presence of Flavonoid the ethanolic fraction of the plant may be evaluated for Anti-inflammatory and Anthelmintic activity for further research. The plant Helencha is known as Enhydra fluctuans belongs to the family Astereceae. According to folklore claim the plant is useful for nutrition purpose. Not only that the plant is also useful in Dropsy, anasarca and snake bite. As per the literature survey, the plant has Antioxidant and Analgesic activity. Here the total attention was given to separate Flavonoid from the mixture of Components present in the ethanolic fraction of the leaves of the plant. Keywords: Flavonoid, Alkaloid, ICH Guideline, Enhydra fluctuans, Dropsy, Anaasrca

    Sigma-1 receptor expression in a subpopulation of lumbar spinal cord microglia in response to peripheral nerve injury

    No full text
    Abstract Sigma-1 Receptor has been shown to localize to sites of peripheral nerve injury and back pain. Radioligand probes have been developed to localize Sigma-1 Receptor and thus image pain source. However, in non-pain conditions, Sigma-1 Receptor expression has also been demonstrated in the central nervous system and dorsal root ganglion. This work aimed to study Sigma-1 Receptor expression in a microglial cell population in the lumbar spine following peripheral nerve injury. A publicly available transcriptomic dataset of 102,691 L4/5 mouse microglial cells from a sciatic-sural nerve spared nerve injury model and 93,027 age and sex matched cells from a sham model was used. At each of three time points—postoperative day 3, postoperative day 14, and postoperative month 5—gene expression data was recorded for both spared nerve injury and Sham cell groups. For all cells, 27,998 genes were sequenced. All cells were clustered into 12 distinct subclusters and gene set enrichment pathway analysis was performed. For both the spared nerve injury and Sham groups, Sigma-1 Receptor expression significantly decreased at each time point following surgery. At the 5-month postoperative time point, only one of twelve subclusters showed significantly increased Sigma-1 Receptor expression in spared nerve injury cells as compared to Sham cells (p = 0.0064). Pathway analysis of this cluster showed a significantly increased expression of the inflammatory response pathway in the spared nerve injury cells relative to Sham cells at the 5-month time point (p = 6.74e−05). A distinct subcluster of L4/5 microglia was identified which overexpress Sigma-1 Receptor following peripheral nerve injury consistent with neuropathic pain inflammatory response functioning. This indicates that upregulated Sigma-1 Receptor in the central nervous system characterizes post-acute peripheral nerve injury and may be further developed for clinical use in the differentiation between low back pain secondary to peripheral nerve injury and low back pain not associated with peripheral nerve injury in cases where the pain cannot be localized
    corecore