23 research outputs found

    An analytical hierarchical model explaining the robustness and flaw-tolerance of the interlocking barb-barbule structure of bird feathers

    Get PDF
    This work is partially supported by the National Natural Science Foundation of China (NSFC) (No. 31300780, 11272091, 11422222, 31470043), the Fundamental Research Funds for the Central Universities (No. 2242016R30014), and ARC (FT140101152). NMP is supported by the European Research Council (ERC StG Ideas 2011 BIHSNAM no. 279985, ERC PoC 2015 SILKENE No. 693670) and by the European Commission under the Graphene Flagship (WP14 "Polymer Composites", No. 696656)

    In-Vivo Hyperspectral Human Brain Image Database for Brain Cancer Detection

    Full text link
    The use of hyperspectral imaging for medical applications is becoming more common in recent years. One of the main obstacles that researchers find when developing hyperspectral algorithms for medical applications is the lack of specific, publicly available, and hyperspectral medical data. The work described in this paper was developed within the framework of the European project HELICoiD (HypErspectraL Imaging Cancer Detection), which had as a main goal the application of hyperspectral imaging to the delineation of brain tumors in real-time during neurosurgical operations. In this paper, the methodology followed to generate the first hyperspectral database of in-vivo human brain tissues is presented. Data was acquired employing a customized hyperspectral acquisition system capable of capturing information in the Visual and Near InfraRed (VNIR) range from 400 to 1000 nm. Repeatability was assessed for the cases where two images of the same scene were captured consecutively. The analysis reveals that the system works more efficiently in the spectral range between 450 and 900 nm. A total of 36 hyperspectral images from 22 different patients were obtained. From these data, more than 300 000 spectral signatures were labeled employing a semi-automatic methodology based on the spectral angle mapper algorithm. Four different classes were defined: normal tissue, tumor tissue, blood vessel, and background elements. All the hyperspectral data has been made available in a public repository.Comment: 19 pages, 12 figure

    In-Vivo Hyperspectral Human Brain Image Database for Brain Cancer Detection

    Get PDF
    The use of hyperspectral imaging for medical applications is becoming more common in recent years. One of the main obstacles that researchers find when developing hyperspectral algorithms for medical applications is the lack of specific, publicly available, and hyperspectral medical data. The work described in this paper was developed within the framework of the European project HELICoiD (HypErspectraL Imaging Cancer Detection), which had as a main goal the application of hyperspectral imaging to the delineation of brain tumors in real-time during neurosurgical operations. In this paper, the methodology followed to generate the first hyperspectral database of in-vivo human brain tissues is presented. Data was acquired employing a customized hyperspectral acquisition system capable of capturing information in the Visual and Near InfraRed (VNIR) range from 400 to 1000 nm. Repeatability was assessed for the cases where two images of the same scene were captured consecutively. The analysis reveals that the system works more efficiently in the spectral range between 450 and 900 nm. A total of 36 hyperspectral images from 22 different patients were obtained. From these data, more than 300 000 spectral signatures were labeled employing a semi-automatic methodology based on the spectral angle mapper algorithm. Four different classes were defined: normal tissue, tumor tissue, blood vessel, and background elements. All the hyperspectral data has been made available in a public repository

    Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features

    Get PDF
    The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom’s 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia

    Ozone therapy versus surgery for lumbar disc herniation : A randomized double-blind controlled trial

    Get PDF
    Altres ajuts: Ministerio de Sanidad (Madrid); Ilustre Colegio de MĂ©dicos de Las Palmas (I19/18).Objectives: Surgery is the treatment of choice for symptomatic disc herniation after conservative management. Several studies have suggested the potential utility of intradiscal ozone infiltration in this pathology. The aim of this trial was to compare intradiscal ozone infiltration vs. oxygen infiltration vs. surgery. Design and interventions: This was a randomized, double-blinded, and controlled trial in patients on a waiting list for herniated disc surgery. There were three treatment groups: surgery; intradiscal ozone infiltration (plus foraminal infiltration of ozone, steroids, and anesthetic); intradiscal oxygen infiltration (plus foraminal infiltration of oxygen, steroids, and anesthetic). Main outcome measures: The requirements for surgery. Results: Five years after the treatment of the last recruited patient (median follow-up: 78 months), the requirement for further surgery was 20 % for patients in the ozone group and 60 % for patients in the oxygen group. 11 % of patients initially treated with surgery also required a second surgery. Compared to the surgery group, the ozone group showed: 1) significantly lower number of inpatient days: median 3 days (interquartile range: 3-3.5 days) vs. 0 days (interquartile range: 0-1.5 days), p = 0.012; 2) significantly lower costs: median EUR 3702 (interquartile range: EUR 3283-7630) vs. EUR 364 (interquartile range: EUR 364-2536), p = 0.029. Conclusions: Our truncated trial showed that intradiscal ozone infiltrations decreased the requirements for conventional surgery, resulting in decreased hospitalization durations and associated costs. These findings and their magnitude are of interest to patients and health services providers. Further validation is ongoing
    corecore