1,125 research outputs found
A comparative assessment of vibration control capabilities of a L-shaped Gurney flap
This work presents the capabilities of a novel L-shaped trailing-edge Gurney flap as a device for vibration reduction. The primary effect of this L-tab is represented by a modification of the reference aerofoil mean line shape through by two counter-rotating vortical structures created at the trailing edge. The comparison of the aerodynamic loads generated by the novel L-tab Gurney flap and a classical trailing-edge flap allows to estimate the ranges of reduced frequency where the L-tab is expected to perform better than a trailing edge flap and vice versa. Linear aerostructural models for a typical section representative of a helicopter blade equipped with a partial-span L-tab or a trailing-edge flap are built, and a higher harmonic control algorithm is applied. Performance are compared between the two devices to reduce separately the N/rev harmonics of the blade root rotating frame vertical force, flapping and feathering moments. The attainment of similar results with classical trailing-edge device is a further confirmation of the potential feasibility of this novel L-tab as an effective alternative means for vibration reduction on rotor blades
Flutter and forced response of mistuned rotors using standing wave analysis
A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motion, and mistuning effects in rotors
Superconductors with Magnetic Impurities: Instantons and Sub-gap States
When subject to a weak magnetic impurity potential, the order parameter and
quasi-particle energy gap of a bulk singlet superconductor are suppressed.
According to the conventional mean-field theory of Abrikosov and Gor'kov, the
integrity of the energy gap is maintained up to a critical concentration of
magnetic impurities. In this paper, a field theoretic approach is developed to
critically analyze the validity of the mean field theory. Using the
supersymmetry technique we find a spatially homogeneous saddle-point that
reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions
to the density of states that render the quasi-particle energy gap soft at any
non-zero magnetic impurity concentration. The sub-gap states are associated
with supersymmetry broken field configurations of the action. An analysis of
fluctuations around these configurations shows how the underlying supersymmetry
of the action is restored by zero modes. An estimate of the density of states
is given for all dimensionalities. To illustrate the universality of the
present scheme we apply the same method to study `gap fluctuations' in a normal
quantum dot coupled to a superconducting terminal. Using the same instanton
approach, we recover the universal result recently proposed by Vavilov et al.
Finally, we emphasize the universality of the present scheme for the
description of gap fluctuations in d-dimensional superconducting/normal
structures.Comment: 18 pages, 9 eps figure
Wall effects on pressure fluctuations in turbulent channel flow
The purpose of the present paper is to study the influence of wall-echo on
pressure fluctuations , and on statistical correlations containing ,
{\em viz} redistribution , pressure diffusion , and
velocity/pressure-gradient . We extend the usual analysis of
turbulent correlations containing pressure fluctuations in wall-bounded
\tsc{dns} computations [Kim J.: {\em J. Fluid Mech.} {\bf 205} (1989)
421--451], separating not only into rapid and slow
parts [Chou P.Y.: {\em Quart. Appl. Math.} {\bf 3} (1945)
38--54], but further into volume ( and
) and surface (wall-echo;
and ) terms. An algorithm, based on a Green's function
approach, is developed to compute the above splittings for various correlations
containing pressure fluctuations (redistribution, pressure diffusion,
velocity/pressure-gradient), in fully developed turbulent plane channel flow.
This exact analysis confirms previous results based on a method-of-images
approximation [Manceau R., Wang M., Laurence D.: {\em J. Fluid Mech.} {\bf 438}
(2001) 307--338] showing that, at the wall, and
are usually of the same sign and approximately equal. The above
results are then used to study the contribution of each mechanism on the
pressure correlations in low Reynolds-number plane channel flow, and to discuss
standard second-moment-closure modelling practices
Indicial lift response function: an empirical relation for finite‐thickness airfoils, and effects on aeroelastic simulations
Parameter varying flutter suppression control for the BAH jet transport wing
The aeroelastic flutter is an undamped oscillation that occurs on flexible structures placed into an airflow. It is caused by the interaction of the structural dynamics and the aerodynamics. Since it generally leads to structural failure, it has to be avoided. The paper proposes a complete framework for handling the aeroservoelastic behavior of aerospace applications, addressing the high dimensional problem in a tractable manner. The applicability of the proposed methodology is demonstrated by designing a flutter suppression controller for the BAH jet transport wing
- …
