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Abstract

This paper presents a method to determine �utter and divergence in-

stability limits for a 2D airfoil section �tted with active control. The

control system consists of a �ap-like deformable trailing edge actuator,

maneuvered by algorithms based on measurements of either heave dis-

placement, local angle of attack, or pressure di�erence over the airfoil.

The purpose of the trailing edge actuator is to reduce �uctuations in the

aerodynamic forcing and a signi�cant potential for active fatigue load al-

leviation has been reported in recent studies.

Besides the control, the full model of the �ap equipped airfoil also

comprises a structural and an aerodynamic part. The in-plane motion

and deformation of the 2D structure are described by three degrees of

freedom: heave translation, pitch rotation and �ap de�ection. A poten-

tial �ow model provides the aerodynamic forces and their distribution,

the unsteady aerodynamics are described using an indicial function ap-

proximation. Stability of the full aeroservoelastic system is determined

through eigenvalue analysis.

Validation is carried out against a reimplementation of the recursive

method by Theodorsen and Garrick for `�exure-torsion-aileron' �utter.

The implemented stability tool is then applied to an airfoil section repre-

sentative of a wind turbine blade with active �ap control. It is thereby

observed that the airfoil stability limits are signi�cantly modi�ed by the

presence of the �ap, and they depend on several parameters: �ap struc-

tural characteristics, type of control, control gain factors and time lag.
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1 Introduction

An important contribution to the fatigue loads that a blade experiences on a

modern horizontal axis wind turbine (HAWT) originates from �uctuations in

the aerodynamic forcing, as produced, for instance, by wind turbulence, wind

shear, tower shadow or yaw misalignment. The possibility of reducing such

contribution by means of active control systems has been addressed in several

research projects.

Bossanyi [1] and Larsen et al. [2] investigate the fatigue load alleviation

potential of an improved blade pitch control. Larsen et al. [2] reach to the

conclusion that by adopting a cyclic blade pitching the �apwise fatigue loads

can be reduced up to 15 % with respect to the normal collective pitch, and a 28

% reduction would be instead achieved by pitching each blade independently.

Pitching the whole blade, though, may become inadequate as HAWT blades

increase in size and become more �exible. Further load reduction would hence

require a faster control, able to intervene locally along the blade span.

As concluded in the overview given by Barlas and van Kuik [3], a signi�cant

reduction of the fatigue loads could be achieved through a `smart' rotor, �tted

with active aerodynamic control systems. At the state of the art, several stud-

ies report considerable potentials for aerodynamic control methods based either

on deploying tabs [4], or on classic rotating �aps [5] or on �ap-like deformable

trailing edges [6, 7, 8, 9, 10, 11]. Unlike a classic rigid plain �ap, a deformable

trailing edge �ap de�ects the aft part of the airfoil following a non-linear defor-

mation shape, with a smooth and continuous variation of the camberline slope,

thus avoiding discontinuity points as the hinge in a classic rotating �ap. CFD

studies by Troldborg [7] have shown that this is bene�cial in terms of the e�-

ciency of the airfoil, measured as the lift-to-drag ratio, compared to the classic

hinged �ap case. Furthermore, it is believed to be bene�cial in terms of noise

production as well. Buhl et al. [6] simulate the response of a 2D airfoil where a

deformable trailing edge �ap is controlled in order to compensate for variations

in the incoming turbulent �ow, thus achieving a considerable reduction in the

lift �uctuations. The aerodynamic forces in the simulations by Buhl et al. [6]

are computed employing Gaunaa's [12] potential �ow model for a thin airfoil

section undergoing arbitrary motion and camberline deformation. Andersen et

al. [8] extends the model to take into account the e�ects from �uid viscosity

and simulations including the interaction with a wind turbine standard control

system are presented in Andersen et al. [9]. Here, it is concluded that by apply-
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ing an active �ap control the blade �apwise fatigue load would be reduced up

to 48 %, with respect to an HAWT without �ap-like deformable trailing edges.

Active control with deformable trailing edge �ap actuators has shown a sig-

ni�cant potential for fatigue load alleviation. Nevertheless, the application of

such device on a wind turbine blade also modi�es the aeroelastic stability pro-

prieties of the blade itself. A �rst obvious consequence is a variation in the mass

distribution along the airfoil section. A heavy trailing edge �ap moves aft the

center of gravity of the whole section, thus resulting in lower stability limits, as

known from `classic' stability investigations of rigid wing sections [13, 14, 15].

Furthermore, as observed by Gaunaa [16] for a rigid controlled trailing edge �ap,

the presence of the �ap control also induces variations of the airfoil stability lim-

its that are less trivial and eventually result in signi�cant reduction of the �ow

speeds at which instabilities are expected to occur. A widened investigation on

the stability aspects related to �ap control is here presented, focusing the anal-

ysis on those aeroelastic instabilities that occur under attached �ow conditions:

�utter and divergence.

Divergence is a static instability that occurs when the aerodynamic pitch-

ing moment, which acts on the airfoil section with a magnitude proportional

to the �ow speed squared, exceeds the restoring torsion elastic moment, thus

leading to extreme airfoil torsions bounded only by nonlinear e�ects such as

stall or nonlinear geometric sti�ness. Divergence only depends on the equilib-

rium between static pitching moments. Therefore, the divergence limit for rigid

airfoil sections can be computed with a simple analytical equation, as shown

by Theodorsen [13]. A �ap equipped section may also undergo another static

aeroelastic phenomenon, referred to as control reversal. In fact, the e�ect of the

�ap control on the lift force variation is reversed above a certain �ow speed, as

a consequence of the angle of attack variation caused by the aerodynamic pitch-

ing moment produced by the �ap de�ection, Bisplingho� et al. [15]. Unlike

divergence, control reversal does not necessarily lead to an unstable condition.

Flutter is a more complex dynamic phenomenon and involves the coupling

of two or more degrees of freedom, typically heave and torsion. A structure

undergoing �utter instability presents self-sustained oscillations around an equi-

librium state, the amplitude of the oscillations increases exponentially in time

up to a limit cycle, constrained to �nite amplitudes only by the system non-

linearities. The �ow speed limit at which �utter occurs is usually lower than

the divergence one and can not be determined by simple analytical equations,

and, although empirical expressions have been proposed [14], generally more

complex numerical methods are required.

Theodorsen [13], Theodorsen and Garrick [14] propose a recursive method to

determine the �utter limits of a `typical section' equipped with a conventional
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trailing edge �ap. The section is described as a �at plate with in�nite span

and three degrees of freedom (DOF), the �rst two being the linearly elastically

constrained heave and torsion modes of the main wing. The third DOF is

the de�ection angle of the �ap, which consists of a rigid plate that rotates

around its hinge point, also constrained by a linear spring. In Theodorsen and

Garrick's formulation, the e�ects on the aerodynamic forces from the vorticity

shed into the wake are modeled by complex Bessel functions that depend on the

�utter frequency itself, therefore a recursive solution is required to determine the

stability limit. A similar formulation is adopted by Lobitz [17], who modi�es the

model to determine the �utter limits of an isolated wind turbine blade rotating

in still air. Lobitz concludes that, for a 1.5 MW wind turbine blade, �utter

would occur if the rotor over-speeds up to double the nominal rotational speed.

A similar �gure is reported in Hansen's [18] stability investigations for the 5

MW NREL reference turbine, and he also concludes that, concerning �utter

instability, the analysis of an isolated blade returns the same results as a full

turbine investigation. In Hansen's [19] analysis the e�ects of the shed wake

are modeled using an indicial function approximation, the aeroelastic system is

then represented in a state-space formulation and stability is determined using

an eigenvalue approach.

The present paper proposes a method to determine the �utter and divergence

limits of a 2D airfoil section equipped with deformable trailing edge �ap control.

The model of the airfoil aeroservoelastic system comprises three interacting

parts: structural, aerodynamic and control. The aerodynamic model consists

of Gaunaa's [12] thin airfoil unsteady potential �ow model, where the e�ects of

the shed wake are represented through an indicial function approximation and

the aerodynamic variables are thereby expressed in a state-space formulation.

Comparisons with CFD simulations [7] have shown that the aerodynamic model,

despite the simplifying assumptions, is able to capture the underlying physics.

The control part of the model is then given by a control algorithm and a control

delay model, the latter implemented through a �rst order �lter. Three control

algorithms are here presented, based on measurements of heave displacement,

angle of attack (as in Buhl et al. [6]), or pressure di�erence between the suction

and pressure sides of the airfoil. The airfoil structure is described by a three

degrees of freedom model: one DOF for the heaving (plunging) translation,

one for the pitch (torsion) rotation and one for the �ap de�ection, where a

generalized coordinate approach is applied to cope with the non-linear de�ection

shape.

The motion of the airfoil in the streamwise (horizontal) direction is neglected

on the ground of results from a preliminary study, brie�y presented in the follow-

ing section. Stability analysis of a rigid airfoil without �ap have in fact shown
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that, in the investigated cases, the streamwise degree of freedom scarcely a�ects

the �utter stability limits, and can therefore be neglected, thus simplifying the

aerodynamic model to a linear formulation.

Stability of the full aeroservoelastic system in its time-space formulation is

then investigated using an eigenvalue approach, a stability tool is thereby imple-

mented to compute �utter and divergence limits of a �ap controlled elastically

mounted airfoil section. The tool is validated by comparison with a reimple-

mentation of Theodorsen's [13] recursive method for the `�exure-torsion-aileron'

�utter problem and against time marching solutions.

In the last part of the paper, the implemented stability tool is applied to an

airfoil, representative of an HAWT blade section, where a deformable trailing

edge �ap control is introduced for fatigue load reduction. The investigated airfoil

section is the same considered in the load alleviation simulations from Buhl et

al. [6]. It is thereby possible to assess the e�ects of a deformable �ap on the

system stability and whether such control system might critically modify the

stability limits.

2 Preliminary study: undeformable airfoil

A stability investigation has been �rst carried out on a simpler aeroelastic sys-

tem: a 2D airfoil section performing only in-plane rigid body motion. The

model, simpli�ed by the absence of the �ap, allows to better assess the in�uence

of di�erent parameters on the section stability limits. The results justify the

assumption of negligible e�ects of the streamwise DOF on �utter velocities, as

assumed in the �ap controlled model, and they generally provide a convenient

background and term of comparison for the following investigation of the �ap

controlled section. The analysis is only brie�y outlined here, a more detailed

description is reported in Bergami [20].

2.1 Model and Method

The rigid in plane motion of the airfoil section is completely described by three

degrees of freedom (DOF): two for translations, in the heave and streamwise

directions, and one for the rigid body rotation corresponding to the torsional

DOF for a full 3D wing. The rotation is de�ned with respect to the elastic axis,

which intersects the airfoil section at the rotation hinge point. Each degree of

freedom is then constrained by a linear elastic spring and a viscous damper.

The aerodynamic model is based on the state-space formulation presented by

Hansen et al. [21], but only the case of fully attached �ow is here considered.

Due to the streamwise DOF, non linear equations are required to describe the
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2.2. Validation

aerodynamic forces, and therefore the aeroelastic system needs to be linearized

with respect to a speci�ed equilibrium state prior to an eigenvalue stability

analysis. Linearized expression for the aerodynamic forces are reported for the

general case by Hansen et al. [21] and are tailored to the speci�c one in Bergami

[20]. Stability limits are then computed for a range of heave-torsion frequency

ratios and a time marching solution is carried out on the full non linear system

to verify the stability limits obtained through the eigenvalue analysis of the

corresponding linearized system.

2.2 Validation

The model and its implementation are validated by computing the �utter lim-

its for a �at plate, the results are then compared against the �gures obtained

with a reimplementation of the recursive method for the `�exure-torsion' �utter

problem described by Theodorsen and Garrick [14, 13]. The results computed

with the actual stability tool (Figure 1, full thick lines) and the reimplemented

Theodorsen's method (�2� and �3� lines) are found to be in good agreement,

while discrepancies are reported for high frequency ratios between the actual

results and the curves published in the original work [14] (dashed lines with tri-

angles). As already reported by Zeiler [22], the original results, also presented

in textbooks [15], may have been a�ected by numerical errors, probably due to

the scarce computational power available at the time. Zeiler's results (Figure 1,

∗ points) are also found to be in good agreement with the actual ones.

2.3 Results and Observations

The implemented stability tool has been used to assess the in�uence of several

parameters on a rigid airfoil �utter and divergence limits. Most of the observed

trends have already been described in the literature [15, 14], in particular, for

low heave-torsion frequency ratios as the case for a HAWT blade section, it is

observed that structural damping and elastic axis position scarcely a�ect the

�utter limit, while, on the contrary, the stability limit is very sensitive to other

structural parameters as mass, moment of inertia, torsion and heave sti�ness.

The sensitivity of �utter limit to the center of gravity position is also con-

�rmed: the more aft the point is located the less stable the section is. As a

consequence, a heavy �ap device, which increases the airfoil mass in the trailing

edge region, generally reduces the �ow speed at which �utter occurs. Depending

on the structural proprieties of the speci�c airfoil section and �ap, the e�ects

on the stability limits induced by the modi�ed mass distribution might be as

signi�cant as the e�ects of the �ap control.
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2.3. Results and Observations
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Figure 1: Reduced �utter speed vs. Heave-Torsion frequency ratios: rigid airfoil stability
tool validation. Two centre of gravity positions are considered, corresponding respectively
to two dimensionless moments of static unbalance: xα = 0.1 (blue lines with 3) and
xα = 0.2 (red lines with 2). Flutter curves computed with: actual eigenvalue stability
tool (full thick lines), reimplementation of Theodorsen recursive method (�3� and �2�).
Comparison with: Theodorsen and Garrick (case (q), Graph I-A in [14]) original results
(dashed lines with triangles); Zeiler's [22] results (∗ dots).
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Investigations have been also carried out to determine whether the �utter

limit is in�uenced by the streamwise degree of freedom. It is observed that in

case of a �at plate or, generally, symmetric airfoil pro�les, the streamwise degree

of freedom has no e�ects on the system stability. If the camber proprieties of

the airfoil are instead considered, the mode related to the streamwise DOF may

become unstable for lower �ow speed. On the other hand, the negative damp-

ing introduced by this unstable mode is so low that the streamwise instability

completely disappears as a realistic structural damping is applied.

The in�uence of the streamwise DOF on the �utter limits is hence small in

all the investigated cases. It is therefore considered a reasonable assumption

to neglect the movements of the structure in the streamwise degree of freedom,

obtaining thus a simpli�ed formulation of the aerodynamic model, as will be

employed in the model of the �ap controlled section.

3 Model and Method

The aeroservoelastic model that describes a �ap controlled airfoil section con-

sists of structural, aerodynamic and control components. The resulting system

of equations is then cast in a state-space matrix formulation and stability, in

speci�ed states and �ow speed conditions, is investigated by means of eigenvalue

analysis. A tool to compute the �utter and divergence limits of an airfoil section

equipped with a deformable trailing edge �ap control is thereby implemented.

3.1 Structural Model

3.1.1 Reference system

A local reference system is used to position speci�c points on the airfoil section.

The reference frame (Figure 2, top-right) has origin at the half chord and extends

along the airfoil chord with positive direction toward the trailing edge. The

dimensionless coordinate ε is normalized with respect to the half chord length

bhc and ranges from −1, at the leading edge, to +1, at the trailing edge. The

airfoil section is hinged at the point with coordinate εea, corresponding to the

intersection between the blade elastic axis and the plane where the airfoil section

lies. The section centre of gravity, εcg, is located at a dimensionless distance

xα from the elastic axis; xα is usually referred to as dimensionless moment of

static unbalance and is positive if the centre of gravity lies aft the elastic axis.

The point εhpfl where the deformable portion begins is named �ap hinge point,

in analogy to a `classic' rigid �ap. The center of gravity for the isolated �ap is

located at the point εcgfl .
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3.1. Structural Model

The mass of the airfoil section is distributed along the chord according to

a `density' function ρ2D. The function ρ2D, in kg/m2, represents the mass,

referred to unit span, of an in�nitesimal chord portion of the airfoil section,

bhc ·dε. The total mass of the airfoil section mtot, referred to unit span, is hence

the integral of the mass distribution function from the leading to the trailing

edge, and, similarly, the moment of inertia for unit span with respect to the

elastic axis point Iea is computed as

Iea =

∫ +1

−1

ρ2D(ε− εea)
2b2hc bhcdε = Icg +mtot(εcg − εea)

2b2hc. (1)

Figure 2: Reference systems. Top-Right : local dimensionless coordinate systems normalized
with the half chord length bhc. Origin at half chord, positive toward the trailing edge.
Bottom-Left : global reference system to de�ne the airfoil motion. Degrees of freedom:
heave (y) positive upwards, pitch (α) positive nose up, �ap de�ection (β) positive �ap
downwards.

The motion and de�ection of the �ap equipped airfoil are described by three

degrees of freedom (Figure 2, bottom-left): y for the rigid body translation in

the heave (plunge) direction, α for the rigid rotation that describes the airfoil

pitch (torsion) around the elastic axis point εea, and β to represent the �ap de-

�ection. The displacements in the streamwise degree of freedom are neglected

since, as concluded in the preliminary study, their in�uence on �utter or diver-

gence stability limits is small for the case without a �ap. The heave coordinate

y is positive upwards, and both the pitch α and �ap β coordinates are consid-

ered positive in the clockwise direction, resulting in positive motions when the

airfoil pitches nose up and the �ap de�ects downward. The incoming �ow has a

constant horizontal direction, parallel to the airfoil resting position, therefore,

the structural pitch angle α is also equivalent to the airfoil angle of attack at

steady conditions: αAoa,st = α.
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3.1. Structural Model

The de�ection of the trailing edge �ap is described by means of a deformation

mode shape ufl, which de�nes the shape of the �ap by specifying the position of

the deformed airfoil camberline when a unit de�ection coordinate β is assumed,

Figure 3. The mode shape is only a function of the chordwise position ε and it

can be arbitrarily scaled. The actual scale factor is chosen so that the coordinate

β corresponds, for small �ap de�ections, to the angle between the undeformed

camberline and the line connecting the deformed trailing edge position to the

hinge point (dash-and-dot line in Figure 3), a unit value of β corresponds to an

angle of 1 degree.

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
−0.01

−0.005

0

0.005

0.01

β flap deflection

ε    [−]

u fl
   

 [m
]

 

 
Deflection Shape
Undeflected Flap
β angle, Plain Flat Flap

Hinge Point: ε
fl
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Figure 3: Flap de�ection mode shape ufl. β = 1 results in 1◦ angle between the trailing
edge-hinge point line and the unde�ected �ap position. The plot shows a camberline
deformation corresponding to a �ap de�ection of β = 5◦. The represented �ap de�ection
mode shape is the one applied to the �ap controlled blade section in the following stability
analysis and it corresponds to the mode shape employed in [6].

3.1.2 Equations of motion

The equations of motion for the section translation and rotation are the classic

ones for a suspended rigid body, with the addition of inertial terms related to

the �ap de�ection. Under the assumption of small pitch angles α, they read

mtotÿ − Sαα̈+ bhcInsfl β̈ + cy ẏ + kyy = Laed, (2)

− Sαÿ + Ieaα̈+ (εeab
2
hcInsfl − b2hcImsfl) β̈ + cαα̇+ kαα = Maed. (3)

Where, mtot is the total mass of the airfoil referred to unit span; Sα is the

moment of static unbalance, Sα = (εcg − εea)bhcmtot; Iea is the moment of

inertia per unit span with respect to the elastic axis, Eq.(1); cdof is the viscous

damping coe�cient, cdof = 2ξdofωdofmtot; kdof is the sti�ness of the linear-

elastic springs.

The terms Insfl and Imsfl represent, as in Gaunaa [12], the contribution
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3.1. Structural Model

to the inertial forces from the �ap de�ection. The terms are de�ned using

a generalized coordinates approach and they correspond to the virtual work

carried out by the inertial forces resulting from unit acceleration in the heave

and pitch degrees of freedom, respectively; the displacement for the virtual work

is then given by the de�ection shape. The terms are computed as chordwise

integral of the de�ection shape ufl, the unit-span mass distribution ρ2D and the

chord dimensionless coordinate ε:

Insfl =

∫ +1

−1

ufl ρ
2D dε, (4)

Imsfl =

∫ +1

−1

ufl ρ
2D ε dε. (5)

The aerodynamic forcing terms, namely the lift, Laed, and the moment around

the hinge point, Maed, are obtained from the aerodynamic model.

The �ap equation of motion is derived, in generalized coordinates, from the

equilibrium between inertial, damping, elastic and aerodynamic virtual work,

computed according to the displacement given by the assigned de�ection mode

shape:

bhcInsfl ÿ + (εeab
2
hcInsfl − b2hcImsfl) α̈+mmod β̈ + cfl β̇ + kfl (β−βctrl) = GFaed,

(6)

where, mmod is the modal mass of the �ap de�ection mode shape, from the

chordwise integral

mmod =

∫ 1

−1

uflρ
2Dufl bhc dε. (7)

The sti�ness of the �ap kfl is assigned by setting the natural frequency ωfl of the

de�ection mode shape: kfl = mmod ω2
fl. The coupling between the structural

model and the control model is given by the term βctrl, which represents, as an

additional elastic term, the contribution to the �ap de�ection coming from the

control actuator. The generalized force acting on the �ap GFaed is computed as

the virtual work of the pressure di�erence between suction and pressure sides

of the airfoil, which is also supplied by the aerodynamic model, just as the lift

force Laed and the pitching moment Maed:

GFaed =

∫ 1

−1

ufl∆P bhc dε. (8)
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3.2. Aerodynamic Model

3.2 Aerodynamic Model

The model developed by Gaunaa [12] allows for computation of the aerody-

namic forces and their distribution for a 2D airfoil undergoing arbitrary motion

and deformation of the camberline. It is thereby possible to describe the aero-

dynamic forces acting on the �ap equipped airfoil. Three main assumptions

underlie the formulation: thin airfoil, potential �ow and straight line wake. The

former assumption implies that the airfoil is represented by its camberline: the

thickness is neglected and the airfoil position, motions and deformations are de-

scribed through the camberline points. The validity of the model is then limited

to potential �ow condition. Flow separation and stall are not considered and

the validity range is restricted to small �ap de�ections and angles of attack.

Furthermore, the e�ects of the wake on the airfoil are computed assuming that

both the airfoil and the wake lie on a straight line. Although included in [12],

the streamwise degree of freedom, as previously mentioned, is neglected in the

present work. Under these assumptions the aerodynamic model for both inte-

gral and distributed (pressure di�erence over the airfoil) forces is represented

by a linear system. The aerodynamic model involves integrals of functions of

the de�ection mode shapes and their slopes. Since the integrals are evaluated

through numerical methods, in order to achieve a su�cient accuracy and avoid

biased stability limits, an adequate number of points should be employed to

discretize the de�ection shape along the chord.

The aerodynamic forces can be split into a non-circulatory and a circulatory

contribution. The non-circulatory terms can be interpreted as arising from the

inertial forces of the �uid mass in the immediate vicinity of the airfoil being

accelerated with the airfoil. They are not a�ected by wake memory e�ects

and only depend on the instantaneous motion of the airfoil. The circulatory

contribution, on the other hand, is linked to the wake vorticity and therefore

has a memory e�ect. This contribution is computed using an e�ective equivalent

down-wash speed weff , which di�ers from the correspondent quasi-steady one

w3/4.

The e�ects of the vorticity shed into the wake are then modeled through an

approximation of the indicial response function φ as a series of nlag exponential

time lag terms:

φ(τ) ≈ 1−
nlag∑
i=1

Aie
−biτ , (9)

where, τ is a dimensionless time variable, τ = (1/b)
∫ t

0
Ureldt, corresponding to

the distance, expressed in half-chords, that the airfoil has traveled with respect

to the �ow. The coe�cients Ai and bi are parameters that describe the circu-
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3.2. Aerodynamic Model

latory lift response to a step change in the angle of attack. The coe�cients of

the two terms approximation for �at plate response computed by Jones [23] are

usually adopted. In case of airfoils with a non-zero thickness, a di�erent, and

generally slower, response is observed [21], the parameters used to approximate

the response of a Ris B1-18 airfoil are reported by Buhl et al. [6], and are listed

in Table 1.

Each of the exponential time lag term in the indicial response series is then

represented through a �rst order di�erential equation,

żi = − 1

bhc
U0bi zi +

1

bhc
U0biAi w3/4, (10)

introducing thus nlag additional equations and state variables zi in the system.

The indicial response function approximation is then substituted in a Duhamel's

superposition integral, and leads to the following expression for the e�ective

equivalent down-wash speed:

weff = w3/4

(
1−

nlag∑
i=1

Ai

)
+

nlag∑
i=1

zi, (11)

where w3/4 is the quasi-steady equivalent down-wash speed at the three quarter

chord point,

w3/4 = U0 αAoa,st−
1

2π
U0Hdydx β − ẏ+ bhc(0.5− εea) α̇− 1

2π
Hy β̇, (12)

the steady angle of attack αAoa,st is equal to the structural pitch angle α, and

Hy and Hdydx are integrals of the de�ection shape and its slope, as speci�ed in

[12].

A full description of the aerodynamic model is reported by Gaunaa [12],

together with expression for the aerodynamic forces in the general case of an

arbitrary number of de�ection shapes and arbitrary motion of these, including

motion in the streamwise direction. The expressions, adapted to the current

problem using only one de�ection shape, lead to the following equations for

the unsteady lift force Laed, the pitching moment Maed and the �ap de�ection

generalized forces GFaed.

Laed = ρb2hcπU0 α̇+ ρb2hc
1

π
U0Fdydx,LE β̇

− ρb2hcπ ÿ − ρb3hcπεea α̈+ ρb2hc
1

π
Fy,LE β̈

+ 2ρbhcπU0 weff + Lcamb, (13)
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3.2. Aerodynamic Model

Maed = ρb2hcU
2
0

(
1

π
Fdydx,LE +

1

2
Hdydx

)
β

+ ρb3hcπU0(0.5− εea) α̇

+ ρb2hcU0

(
−bhc

π
Gdydx,LE +

bhc
π

εeaFdydx,LE +
1

π
Fy,LE +

1

2
Hy

)
β̇

− ρb3hcπεea ÿ − ρb4hcπ
(
1/8 + ε2ea

)
α̈− ρb3hc

1

π
(Gy,LE − εeaFy,LE) β̈

+ 2ρb2hcπU0(0.5 + εea) weff + Mcamb, (14)

GFaed = ρbhc
1

π
U2
0 (PI8 −HdydxPI7) β

+ ρb2hcU0(2PI1 − PI6) α̇+ ρbhc
1

π
U0(bhcPI3 −HyPI7 + PI9) β̇

− 2ρb2hcPI1 ÿ + ρb3hc(−2εeaPI1 + PI4) α̈+ ρb2hc
1

π
PI2 β̈

− 2ρbhcU0PI5 weff + GFcamb. (15)

Where PIn, F..., f..., G..., H... are integrals of the de�ection mode shape, as

speci�ed in [12]. The integrals are evaluated through numerical methods, there-

fore a su�cient number of points should be used in the discretization of the �ap

de�ection mode shape along the chord. The terms Lcamb, Mcamb and GFcamb

represent the contribution to the aerodynamic forces that arise with a cambered

airfoil pro�le. The contribution, since the streamwise DOF is neglected, does

not depend on the system structural variables and remains constant for �xed

free stream �ow speeds. The terms have thus no e�ects on the system stability

and can be neglected in the current analysis.

The aerodynamic model also allows to determine the pressure di�erence

between suction and pressure sides of the airfoil in an arbitrary point εp on

the chord, the pressure di�erence may then be used as input to �ap control

algorithms. The pressure di�erence over the airfoil in case of only one de�ection
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3.3. Control System Model

mode is given by

∆P (εp) = −ρ
1

π
U2
0

 εp√
1− ε2p

Hdydx −
∂fdydx,εp

∂ε

 β

+ ρbhcU0

2
√
1− ε2p +

(2εp + 1)(1− εp)√
1− ε2p

 α̇

+ ρ
1

π
U0

bhcfdydx,εp − εp√
1− ε2p

Hy +
∂fy,εp
∂ε

 β̇

− 2ρbhc

√
1− ε2p ÿ + ρb2hc

√
1− ε2p (−2εea + εp) α̈+ ρbhc

1

π
fy,εp β̈

− 2ρU0
εp − 1√
1− ε2p

weff + ∆Pcamb,εp , (16)

where the integral functions fy,εp and ∂fdydx,εp/∂ε are also evaluated in the

point of interest εp [12]. As mentioned, the contribution from the airfoil pro�le

camber term, ∆Pcamb, can be neglected in stability analysis.

The aerodynamic variables are thus available in a linear state-space formula-

tion and the expressions for the aerodynamic forces can be directly substituted

in the airfoil equations of motion.

3.3 Control System Model

The control system receives as input a set of measurements describing the state

of the aeroelastic system and returns as output an angle βctrl that, by changing

the de�ection of the �ap actuator, acts on the same aeroelastic system. The

control model consists of a control algorithm part and a time lag one. The

control algorithms, according to simple functions of the measured inputs, return

a �ap de�ection βset that would produce the desired changes in the system. In

the time lag part then, βset is delayed and substituted by an angle βctrl that

actually controls the �ap actuator, modeling thus the e�ects of the time delay

that a�ects the control system, from the acquisition of the sensor inputs to the

actuation of the output.

3.3.1 Control algorithms

Three di�erent control algorithms are investigated. The �rst two algorithms

are similar to the ones used in Buhl's [6] load alleviation simulations and they

are, respectively, based on heave displacement and angle of attack measure-

ments. A third control strategy is then implemented using as input the pressure
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3.3. Control System Model

di�erence between the suction and pressure sides of the airfoil in a speci�ed

chordwise location. In this work two chordwise locations will be investigated.

The pressure di�erence control strategy appears particularly interesting due to

the simpler sensor set-up required to provide the control inputs; the achievable

load alleviation potential is currently under study by Andersen et al. [24].

Heave displacement control The heave control consists of a Proportional

Integral Di�erential (PID) algorithm that aims at reducing the �uctuations of

the section heave displacement. The relation between the desired �ap de�ection

and the measured heave displacement and velocity is expressed by the function

βset = Ayy +By ẏ −AyyI , (17)

where the terms Ay and By are the proportional and di�erential gain parame-

ters, respectively. The term yI is the heave displacement running mean, com-

puted by integration over a ∆T window.

The running mean integrand variable can be interpreted as the sum of a con-

stant term and a �uctuating one. The latter term depends on the system state

variables and, in stability analysis for speci�ed states of the system, is assumed

to oscillate around zero. Furthermore, the oscillations time scale is assumed to

be short compared to the integration window ∆T , so that the integral of the

�uctuating part tends to be much smaller than the constant term one. As a

consequence, the integral corresponding to the running mean term yI can be

approximated as constant and hence neglected in the stability analysis. The

control algorithm (17) is thus simpli�ed to a linear function in y and ẏ.

Angle of Attack control The control algorithm attempts to maintain a

constant steady lift component by compensating with a �ap de�ection βset the

variation in the angle of attack αAoa,ctrl. As in Buhl et al. [6], the control input

is computed as a `quasi-steady' angle of attack:

αAoa,ctrl = αAoa,st −
1

U0
ẏ +

bhc
U0

(εAoa,ctrl − εea) α̇, (18)

where the steady angle of attack αAoa,st is equal to the pitch angle α. Due to

the pitch ratio term α̇, the angle of attack input αAoa,ctrl also depends on where

the measuring device is located, as expressed by the dimensionless coordinate

of the sensor position εAoa,ctrl.

In the current analysis, the angle of attack sensor is assumed to be located

one chord length in front of the leading edge, εAoa,ctrl = ε−2 = −2, describing,
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3.3. Control System Model

for instance, an ideal 5-hole Pitot's tube extending from the blade leading edge

[9]. A second sensor location is also investigated, and in this case the measuring

point is placed at the `typical' three quarter chord position: εAoa,ctrl = ε3/4 =

0.5.

The function relating the measured angle of attack αAoa,ctrl to the desired

�ap de�ection βset is then derived from the lift equation (13), simpli�ed by a

steady state assumption [6]:

βset = Aα
2π

Hdydx
αAoa,ctrl −Aα

2π

Hdydx
αI +AαβI , (19)

where, Aα is the control gain and the integral terms αI and βI , under the fast

variations assumption, can be neglected in stability analysis.

Pressure di�erence control In the last algorithm the �ap control objective

is to maintain a constant pressure di�erence between the pressure and suction

side of the airfoil, at the measurement point. In analogy with the angle of attack

control, the control function is derived from the pressure di�erence equation (16)

simpli�ed by a steady state assumption. Neglecting the running mean integral

terms, the expression reads

βset = −A
εp
∆P

π

2

(
∂fdydx,εp

∂ε − Hdydx√
1−ε2p

)
(0.5ρU2

0 )

·∆P, (20)

where A∆P is the control gain, εp is the location of the pressure measurement

point and ∂fdydx/∂ε is a de�ection shape integral evaluated at the measurement

point εp [12]. Two di�erent measurement point locations will be employed in

the following. The �rst point, εcnst = −0.029, is close to the airfoil half chord

and in static conditions, the ratio between the lift coe�cient and the pressure

coe�cient at this speci�c point is constant [20]. This means that for quasi

steady conditions, keeping the pressure di�erence constant in this point results

in a constant lift. The second pressure di�erence measurement point is located

at 10% chord from the leading edge, ε10% = −0.8, because �rst simulations [24]

have shown more promising load alleviation potentiality with pressure sensors

in the fore part of the airfoil.

3.3.2 Control time lag

The time lag that may a�ect the control system is modeled as a �rst order �lter

that delays the algorithm output βset and returns the de�ection angle βctrl, then

applied to the �ap actuator. The delay function is formulated in state-space as
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3.4. Aeroservoelastic System. Eigenvalue Solution

a �rst order di�erential equation,

β̇ctrl =
ln(0.5)

t1/2
βctrl −

ln(0.5)

t1/2
βset, (21)

The reaction half time, t1/2, represents the control lag as the time required by

the control output βctrl to reach half of its �nal value βset following a step input.

The equation grows sti�er as the time lag is reduced, therefore, in the ideal case

of no time lag, equation (21) is not applicable and the delay function simply

reduces to βctrl = βset.

3.4 Aeroservoelastic System. Eigenvalue Solution

The equations describing the aeroservoelastic system are all linear in the system

state variables. By introducing a variable substitution for the second order

derivatives of the structural variables, the full set of equations can be cast in a

linear matrix equation of the �rst order:

Mẋ = Ax+ f0. (22)

Where, x is a vector that collects all the aerodynamic, control and structural

variables of the aeroservoelastic system. As an example, in case of a three

terms indicial response approximation and time lag in the control, the system

would involve 10 �rst order di�erential equations: 3 for variable substitution,

3 equations of motion, 3 aerodynamic wake memory terms equations and 1 for

the control time lag model. The system variables vector would hence be

x =
{
ẏ, α̇, β̇, y, α, β, z1, z2, z3, βctrl

}
. (23)

The behavior of the airfoil structure can be simulated in the time domain

by numerically integrating the set of aeroservoelastic equations through a time

marching algorithm. The resulting response history of the state variable vector

x(t) would then indicate whether the system in the speci�ed conditions is stable

or not.

On the other hand, if the system is linear or linearized, stability analysis

is more conveniently carried out in the frequency domain using an eigenvalue

approach [19]. A solution in the harmonic form x(t) = ϕeλt is assumed for the

matrix equation (22), leading to the generalized eigenvalue problem

(A− λM) ϕ = 0. (24)

The eigenproblem solution consists in a set of eigenvalues λj and respective
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eigenvectors ϕ
j
, which characterize the modes describing the aeroservoelastic

system. The imaginary part of each eigenvalue Im(λj) returns the frequency of

the mode, in rad/s, while the real part Re(λj) relates to the modal damping. A

negative eigenvalue real part corresponds to a stable positively damped modal

contribution and the mode logarithmic damping can be computed as

δj = −Re(λj)

Im(λj)
. (25)

The stability limits are then determined in the frequency domain by solving

the eigenproblem for increasing �ow speed U0. The aeroservoelastic system

in a speci�ed condition is stable only if all the modes are positively damped,

therefore, the �ow speed at which any of the modes turns negatively damped

indicates the stability limit. If the mode turning unstable has a null frequency

Im(λ) = 0, then divergence (static instability) occurs, otherwise, a negatively

damped mode with a positive frequency Im(λ) > 0 yields to a �utter instability.

The system modes, computed at di�erent �ow speeds, are then tracked and

identi�ed by means of a modal assurance criterion [25] based on the eigenvector

modal shapes.

4 Validation

The actual model and its implementation are validated against �utter curves

computed with a reimplementation of Theodorsen's [13] recursive method for a

three degrees of freedom �utter problem. The system considered by Theodorsen

[13] and by Theodorsen and Garrick [14] consists in a �at plain �ap hinged to

the aft edge of a rigid �at plate. The plate translates in the heave direction

and rotates around its elastic axis. The rigid �ap rotates around its hinge point

connected to the plate, linear springs constrain the movements in all the three

degrees of freedom and no control is applied.

In order to investigate Theodorsen's system with the actual stability tool, a

linear de�ection mode shape is de�ned to represent the rigid �ap rotation:

ufl =

{
−
(
ε− εhpfl

)
bhc if ε > εhpfl ,

0 otherwise.
(26)

The terms Imsfl (5), Insfl (4), and mmod (7) are then evaluated according to
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the �at �ap deformation shape (26):

mmod = Ifl,hp = mtotb
2
hc r2β , (27)

Insfl = −mflap(ε
cg
fl − εhpfl ) = −mtotxβ , (28)

Imsfl = − 1

b2hc

(
Ifl,hp − Insflε

hp
fl bhc

)
, (29)

where, Ifl,hp is the moment of inertia with respect to the hinge point of the

isolated �ap and mflap its total mass. The terms rβ and xβ refer to dimension-

less parameters for, respectively, the moment of inertia and the �ap center of

gravity position, de�ned as in the previous works [13, 14]. Furthermore, in or-

der to specify the indicial response function for the �at plate airfoil, the current

tool employs a three terms approximation, Eq. (9). The Ai and bi parameters

that de�ne the response function have been computed by seeking the best �t-

ting [21] between the indicial curve from the approximated expression and the

corresponding curve obtained from an unsteady lumped-vortex panel code [26].

A response function based on the classic two terms approximation by Jones [23]

is also used as comparison. 1

Flutter limits are then computed for the �ap equipped section described

in Theodorsen and Garrick (Figure 8 in [14]), the resulting �utter speeds are

plotted (Figure 4) versus the ratio between �ap de�ection and torsion natu-

ral frequencies ωfl/ωα; as in [14], the heave-torsion frequency ratio is main-

tained constant: ωy/ωα = 0.2. Results from the actual stability tool (Figure 4,

thick full line) are compared to the ones obtained with the reimplementation

of Theodorsen's recursive method (�3� line), the original results [14] are also

displayed (�△� line).

The curves obtained with the two methods are in good agreement and the

stability tool can be considered validated. Further validation tests, including

cases with controlled �ap, are carried out against time marching solutions. As

also observed in the two degrees of freedom �utter problem addressed in the

preliminary study, the original �utter curves reported by Theodorsen and Gar-

rick [14] are biased, probably due to the limited computational means available

at that time.

The e�ects of the wake vorticity on the �at plate aerodynamic are modeled

through analytical functions in Theodorsen's recursive method, while an indicial

response function approximation is adopted in the stability tool, resulting thus

in small di�erences between the respective �utter curves. It is also observed

1The coe�cients for the indicial response function approximation using a three terms ex-
ponential series are A1 = 0.0182, A2 = 0.2411, A3 = 0.2407, and b1 = 3.02 · 10−6, b2 =
0.3989, b3 = 0.0818. Jones coe�cients are A1 = 0.1650, A2 = 0.3350, and b1 = 0.0455, b2 =
0.3000
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Figure 4: Stability tool validation. Reduced �utter speed vs. Flap-Torsion frequency ra-
tio, constant ωy/ωα = 0.2. Flat plate equipped with a rigid rotating unde�ected �ap.
Comparison of �utter limits obtained with: current stability tool (thick full line), reim-
plementation of Theodorsen's recursive method (�3�), original results from Figure 8 in
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pts (hexagons); 50 pts (circles).
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that the curve based on Jones' two term approximation (Figure 4, dashed line),

although su�ciently close to the analytical solution (�3� line), appears slightly

less precise than the one obtained with a three terms response approximation

(thick full line).

As described in the previous section, the aeroelastic system is modeled

through a set of equations that include integral functions of the de�ection shape

along the chord. The de�ection shape integrations are carried out with numeri-

cal methods, therefore, the accuracy of the terms, and thereby of the computed

stability limits, is proportional to the number of points used to discretize the

mode shape along the chord. A convergence analysis is hence required to deter-

mine the adequate number of discretization points.

In the actual validation case (Figure 4), a su�cient accuracy is achieved

with a 500 points grid. The di�erences from more re�ned discretization are

negligible, whereas biased �utter curves (200, 100 and 50 points lines in Figure

4) are observed with a lower number of points. In the following blade section

investigation, a larger number of points (2000, as in [20]), is instead required to

discretize with su�cient accuracy the non linear de�ection mode shape (Figure

3) of the deformable trailing edge �ap.

5 Stability of a Flap Controlled Blade Section

The implemented stability tool is now applied to investigate the �utter and di-

vergence limits of an airfoil equipped with a deformable trailing edge control.

The investigated airfoil section is identical to the one adopted in the load alle-

viation simulations from Buhl et al. [6] and the section structural proprieties

are set to be representative of a MW-size blade section with a Ris B1-18 airfoil

pro�le. Stability limits of a blade section actively controlled for fatigue load al-

leviation are thus determined and the e�ects of the deformable �ap on stability

are assessed.

The structural properties of the investigated airfoil are reported in Table 1,

together with the three pairs of parameters that describe the indicial response

function approximation for the Ris B1-18 airfoil pro�le [6]. The control gain

parameters (Table 1) are tuned for fatigue load alleviation at a �ow speed close

to 60 m/s. Gain parameters from the optimization in [6] are adopted for the

heave and angle of attack algorithms, while the two versions of the pressure

di�erence controls are tuned with Ziegler-Nichols' method [27], since optimized

parameters were not yet available at the time writing.

Results indicate that the �ap control signi�cantly modi�es the stability lim-

its of the airfoil section. In fact, the �ow speed at which �utter occurs on a �ap

equipped section di�ers from the rigid airfoil one and it varies in a non-trivial
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5.1. Unde�ected Elastic Flap

Airfoil structural proprieties Indicial Response Approximation

Chord Length 2bhc 1 m Ris B1-18 Airfoil Pro�le, 3 terms:
Elastic Axis εea -0.4 � A1 0.0821
Centre of Gravity εcg -0.3 � A2 0.1429
Total Mass mtot 40 kg/m A3 0.3939
Mom. Inertia CG Icg 2 kg m b1 0.0199
Heave nat.frq. ωy/(2π) 1 Hz b2 0.7817
Torsion nat.frq. ωα/(2π) 10 Hz b3 0.1453

Flap structural proprieties Control Gain Parameters

Flap Mass mflap 1.65 kg/m Heave proportional Ay -500
Flap nat.frq. ωfl/(2π) 50 Hz Heave di�erential By -25
Flap Modal Mass mmod 6.284 10−7 kg m Angle of Attack Aα 1

Inert.Term y Insfl -1.295 10−3 kg/m ∆P , at ε10% Aε,10%
∆P 0.13

Inert.Term α Imsfl -1.242 10−3 kg/m ∆P , at εcnst Aε,cnst
∆P 0.56

Table 1: Characteristics of the investigated reference airfoil section, same as in [6]. Structural
proprieties for airfoil and �ap. Indicial response approximation terms for a Ris B1-18 airfoil
pro�le. Control gain for fatigue load alleviation at 60 m/s.

fashion depending on several parameters: �ap sti�ness, mass distribution, con-

trol algorithm, time lag and gain values. First, results are presented for the case

of a deformable trailing edge �ap without any control acting on it (unde�ected

elastic �ap), subsequently, the stability curves obtained with the described con-

trol systems are displayed (controlled elastic �ap).

5.1 Unde�ected Elastic Flap

The presence of the deformable trailing edge �ap modi�es the �utter limit of

the airfoil section even when the �ap is not de�ected by the control system. The

resulting �utter limits are then depending on the �ap structural characteristics,

namely its sti�ness and mass distribution.

For a reasonably sti� �ap, as the one installed on the investigated reference

section, the �ow velocity at which �utter sets in is actually increased compared

to the case with a completely rigid airfoil (Figure 5, thick full line). As the

�ap sti�ness is increased, �utter speed converges to the limit computed with

the preliminary model of a rigid airfoil without �ap. On the other hand, if an

excessively soft �ap is mounted, �utter could occur at much lower �ow speeds. In

this case, the mode related to the �ap de�ection is responsible for the instability,

while the stabilizing e�ects on the remaining modes are still present (Figure 5,

dashed line). The �utter curve in this region has a nearly linear trend and its

slope depends on the �ap mass distribution. In fact, a milder slope, and thus a

wider low stability region, is observed in case of �aps with larger mass or more

aft centre of gravity [20].

The �ap equipped blade section is then investigated to assess how di�er-

ent approximations in the aerodynamic model may in�uence the stability limits

predictions, Figure 5. A common approximation simpli�es the unsteady aero-
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5.2. Controlled Flap

dynamic model to a Quasi-Steady one by neglecting the e�ects of the vorticity

shed into the wake. The response function φ is thus constant and equal to unity,

and the e�ective equivalent down-wash speed weff , Eq. (11), simply reduces

to the quasi-steady equivalent down-wash w3/4, Eq. (12). The resulting curve

(�△� line) largely underestimates the section �utter limit for most of the fre-

quency ratios, as also observed on a rigid airfoil by Hansen [18] and on a full

blade by Lobitz [17]. It is therefore concluded that the wake vorticity has a

stabilizing e�ect that can not be neglected in a stability analysis.

The full model curve is computed considering an indicial function approx-

imation of the Ris B1-18 response. The coe�cients for a three terms series

approximation are given in Buhl et al. [6] and here reported in Table 1. Hansen

et al. [21] observe that an airfoil with �nite thickness, such as the Ris B1-18,

has a di�erent, and generally slower, indicial response than the �at plate one.

The di�erence in response then in�uences the corresponding stability curves. In

fact, the �utter limits computed with Jones' coe�cients for a �at plate (Figure

5, �2� line) deviate from the full model curve with a Ris B1-18 airfoil. Although

not negligible, the di�erence between the two stability curves is rather small.

Therefore, in case the response for the speci�c airfoil is unknown, the �at plate

approximation can be considered a reasonable assumption for �utter analysis.

It is also observed that neglecting the contributions to the aerodynamic

forces from the acceleration terms (ÿ, α̈, β̈) results in only slightly overestimated

�utter limits (�◦� line), whereas the U0α̇ contribution to the non circulatory

forces is necessary to avoid completely biased stability limits.

5.2 Controlled Flap

The deformable trailing edge �ap is now controlled for fatigue load alleviation

according to the described control algorithms, and the ideal case of a null control

time lag is considered at �rst (Figure 6). Each control algorithm results in

a diverse stability curve, but all of them present the same qualitative trend

already observed in the unde�ected �ap case (full thick line): in an initial range

of frequency ratios, the �ap de�ection mode is responsible for the instability

and the �utter limit increases almost linearly with the �ap sti�ness up to a

maximum point; for higher �ap frequencies, the �utter limit slightly decreases

and approaches an horizontal asymptote.

Whenever the reference section (vertical line) is actively controlled for fatigue

load alleviation, it undergoes �utter at �ow speeds lower than the unde�ected

�ap case. A decreased stability limit is reported with any of the control algo-

rithms, and, with most of them, the �utter limit is also below the rigid airfoil

one. Nevertheless, in the investigated cases, a critically low limit is only re-
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5.2. Controlled Flap

ported when the �ap is controlled by the heave algorithm (�△� line). In this

case, �utter occurs for �ow speed nearly half the rigid airfoil one, and thus crit-

ically close to conditions that might be encountered in normal operation by a

wind turbine blade section.
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Figure 6: Flutter �ow speed vs. Flap-Torsion natural frequencies ratios for the di�erent
control algorithms. Reference section frequency ratio ωfl/ωα = 5 at the vertical line.
Deformable trailing edge �ap controlled for fatigue load alleviation, null control delay
assumed. Control algorithms: heave (�△�); angle of attack, measured at ε−2 (�2�) and
at ε3/4 (�3�); pressure di�erence at εcnst (�◦�) and at ε10% (�∗�). Stability regions are
reported for the angle of attack and pressure di�erence algorithms: the system is stable for
�ow speeds from the dashed line to the full one. Unde�ected �ap �utter curve (full thick
line) and the rigid trailing edge airfoil one (dash-and-dot) are displayed for comparison.

The stability limits are thus depending on the type of algorithm used to

control the trailing edge �ap, but also on the location of the measurement

device that provides the control input. For instance, in the angle of attack

case, the same control algorithm returns rather di�erent curves considering the

two measurement locations. While the ε−2 curve shows an ordinary trend, in

the ε3/4 case, the instability region observed at low �ow speeds grows as the �ap

sti�ness increases, till the stability region is occluded and, for higher frequency

ratios, the system get unstable in the whole �ow speed range.

A dependency of the stability limits on the control gain parameters is also

reported. In fact, by decreasing the gain magnitudes, stability limits increase

and the �utter curves approach the one obtained with the unde�ected �ap (full
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5.2. Controlled Flap

thick line), which can be interpreted as a particular control with all the gain

parameters set to zero.

Stability limits even above the unde�ected �ap case can be achieved with

a dedicated re-tuning of the gain parameters [20], thus obtaining an active

suppression of the aeroelastic instabilities through the �ap control. On the other

hand, active �utter suppression probably has little interest for wind turbine

applications. In fact, the investigated section presents an unde�ected �ap �utter

limit already above the rigid airfoil one. Therefore, in the event of a wind turbine

rotor over-speeding and unusually high �ow speeds, �utter could be avoided, or

at least postponed, by simply excluding the control system and consequently

rise the stability limit to the unde�ected �ap one. Particular precautions should

be taken in case the exclusion or a failure in the control system would also

compromise the �ap sti�ness, for instance in case of a pneumatically actuated

�ap.

The �ow speed limits at which static instabilities as divergence occur are also

observed to vary depending on the �ap control characteristics. Nonetheless,

in all the investigated cases, �utter occurs at much lower �ow speeds than

divergence does. The stability limits observed on the investigated �ap equipped

section are thus referable exclusively to �utter instabilities.

Control Time Lag In previous studies [6, 28] it was clearly outlined how

by introducing time lag in the control system the load alleviation achievable

with the �ap control would distinctly decrease as the control delay increases.

The control time lag also a�ect the section stability limits, but its e�ects are

indeed not as clearly de�ned (Figure 7). In fact, in the investigated case, if

the control time lag, quanti�ed through the half time t1/2, is increased, the

�utter limit for the ∆Pε,10% algorithm slightly increases (�∗� line), and almost

no e�ects are reported for the angle of attack case (�2�). Whereas, a less

homogeneous response is observed whenever the �ap is actuated according to

the ∆Pε,cnst pressure di�erence algorithm (�◦�) or to the heave one (�△�). In

the latter case, the �utter limit initially rises up to the control reversal speed

(95.5 m/s for the considered section) and then plunges below 10 m/s. The

∆Pε,cnst pressure control algorithm is completely unstable for small time lag,

while for longer control delays the section is only stable inside a region, from

the dashed line to the full one; stability regions are also reported in the angle

of attack control cases.
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6 Conclusion

A model to determine the �utter and divergence limits of a 2D airfoil section

equipped with a deformable trailing edge �ap control is proposed and imple-

mented in a stability tool. The tool is validated against time marching so-

lutions and against the stability limits computed with a reimplementation of

Theodorsen's [13] recursive method. The stability limits computed with the

implemented tool and the recursive method results are in excellent agreement,

while the �utter curves presented in Theodorsen and Garrick [14] are found to

be biased. This is thought to be caused by the limited computational power

and accuracy available at the time the original work was carried out.

Flutter and divergence speeds are then computed for a wind turbine blade

section where a �ap control is applied to actively alleviate fatigue loads, as in

[6]. It is thereby observed that the presence of the deformable trailing edge

�ap, either actively controlled or not, signi�cantly modi�es the section stability

limits. In case of an unde�ected elastic �ap, not manoeuvred by any control, the

stability limits depend on the �ap structural properties. Soft and heavy �aps

result in lower �utter speeds, while a reasonably sti� �ap, as the one considered

in the investigated reference airfoil case, actually increases the velocity limit at

which �utter occurs to a value above the rigid airfoil one. As observed in the

preliminary study, the presence of the �ap also alters the mass distribution of

the whole airfoil section. In fact, the trailing edge �ap structure might increase

the weight of the aft part of the airfoil and, consequently, reduce the �ow speed

at which �utter occurs. Depending on the structural proprieties of the speci�c

airfoil section and �ap, the e�ects on the stability limits induced by the modi�ed

mass distribution might be as signi�cant as the e�ects of the �ap control.

By activating the control algorithms for fatigue load alleviation, the depen-

dency of the stability limits on the �ap structure remains, and lower limits are

reported, in most of the cases below the rigid airfoil �utter speed. However,

only the �ap control based on heave displacement returns a �utter speed as low

as half the rigid airfoil one, setting thus a stability limit critically close to the

�ow speeds encountered by a wind turbine blade in normal operation. Rather

good performances from a stability point of view are instead reported for the

pressure control algorithm, especially in the case of pressure di�erence mea-

surement located at the 10 % chord position. In any case, the unde�ected �ap

airfoil section has a higher stability limit than the rigid airfoil, which renders

the control system `fail-safe' for stability. In fact, in the event of control failure

or rotor over-speeding, a rather high stability limit is set by simply excluding

the control (if the event does not have any repercussion on the �ap sti�ness).

Stability limits are found to depend also on the time lag in the control
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algorithm, although a clear common trend is not recognizable and di�erent

e�ects are observed for each control algorithm.

The implemented stability tool allows to determine the e�ects of the �ap

control on the stability of an airfoil 2D section. The transition from a 2D sec-

tion to a rotating full blade 3D case is not trivial. Finite span aerodynamic,

blade rotation, higher order de�ection modes, structure and control variations

along the blade span are all a�ecting the response of the complete 3D blade, and

consequently, stability limits for a 3D case can not be easily extrapolated from

2D investigations. Nevertheless, a 2D analysis allows to capture the underlying

stability behavior of a blade section and highlights that the �ap control has im-

portant e�ects on the airfoil aeroservoelastic stability. The �ow speed at which

�utter or divergence occur on a �ap controlled section then varies depending

on several factors: the airfoil and �ap structural proprieties, the type of con-

trol algorithm, the control inputs, the gain parameters and the time lag in the

control.

To conclude, the e�ects of a �ap control on the system stability are certainly

neither negligible nor straightforward. Therefore, the usability of a stability tool

able to report such e�ects appears to be signi�cant.
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