112 research outputs found

    Room-temperature transverse-electric polarized intersubband electroluminescence from InAs/AlInAs quantum dashes

    Full text link
    We report the observation of transverse electric polarized electroluminescence from InAs/AlInAs quantum dash quantum cascade structures up to room temperature. The emission is attributed to the electric field confined along the shortest lateral dimension of the dashes, as confirmed by its dependence on crystallographic orientation both in absorption measurements on a dedicated sample and from electroluminescence itself. From the absorption we estimate a dipole moment for the observed transition of =1.7 nm. The electroluminescence is peaked at around 110 meV and increases with applied bias. Its temperature dependence shows a decrease at higher temperatures limited by optical phonon emission.Comment: 15 pages, 4 figures, submitted to Applied Physics Letter

    Heparin Induces Harmless Fibril Formation in Amyloidogenic W7FW14F Apomyoglobin and Amyloid Aggregation in Wild-Type Protein In Vitro

    Get PDF
    Glycosaminoglycans (GAGs) are frequently associated with amyloid deposits in most amyloid diseases, and there is evidence to support their active role in amyloid fibril formation. The purpose of this study was to obtain structural insight into GAG-protein interactions and to better elucidate the molecular mechanism underlying the effect of GAGs on the amyloid aggregation process and on the related cytotoxicity. To this aim, using Fourier transform infrared and circular diochroism spectroscopy, electron microscopy and thioflavin fluorescence dye we examined the effect of heparin and other GAGs on the fibrillogenesis and cytotoxicity of aggregates formed by the amyloidogenic W7FW14 apomyoglobin mutant. Although this protein is unrelated to human disease, it is a suitable model for in vitro studies because it forms amyloid-like fibrils under physiological conditions of pH and temperature. Heparin strongly stimulated aggregation into amyloid fibrils, thereby abolishing the lag-phase normally detected following the kinetics of the process, and increasing the yield of fibrils. Moreover, the protein aggregates were harmless when assayed for cytotoxicity in vitro. Neutral or positive compounds did not affect the aggregation rate, and the early aggregates were highly cytotoxic. The surprising result that heparin induced amyloid fibril formation in wild-type apomyoglobin and in the partially folded intermediate state of the mutant, i.e., proteins that normally do not show any tendency to aggregate, suggested that the interaction of heparin with apomyoglobin is highly specific because of the presence, in protein turn regions, of consensus sequences consisting of alternating basic and non-basic residues that are capable of binding heparin molecules. Our data suggest that GAGs play a dual role in amyloidosis, namely, they promote beneficial fibril formation, but they also function as pathological chaperones by inducing amyloid aggregation

    Monte Carlo modeling applied to studies of quantum cascade lasers

    Full text link

    Iridium‐Catalyzed Hydrochlorination and Hydrobromination of Alkynes by Shuttle Catalysis

    No full text
    Described herein are two different methods for the synthesis of vinyl halides by a shuttle catalysis based iridium‐catalyzed transfer hydrohalogenation of unactivated alkynes. The use of 4‐chlorobutan‐2‐one or tert‐butyl halide as donors of hydrogen halides allows this transformation in the absence of corrosive reagents, such as hydrogen halides or acid chlorides, thus largely improving the functional‐group tolerance and safety profile of these reactions compared to the state‐of‐the‐art. This method has granted access to alkenyl halide compounds containing acid‐sensitive groups, such as tertiary alcohols, silyl ethers, and acetals. The synthetic value of those methodologies has been demonstrated by gram‐scale synthesis where low catalyst loading was achieved

    Nickel‐Catalyzed Inter‐ and Intramolecular Aryl Thioether Metathesis by Reversible Arylation

    No full text
    A nickel‐catalyzed aryl thioether metathesis has been developed to access high‐value thioethers. 1,2‐Bis(dicyclohexylphosphino)ethane (dcype) is essential to promote this highly functional‐group‐tolerant reaction. Furthermore, synthetically challenging macrocycles could be obtained in good yield in an unusual example of ring‐closing metathesis that does not involve alkene bonds. In‐depth organometallic studies support a reversible Ni0/NiII pathway to product formation. Overall, this work not only provides a more sustainable alternative to previous catalytic systems based on Pd, but also presents new applications and mechanistic information that are highly relevant to the further development and application of unusual single‐bond metathesis reactions
    corecore