17,187 research outputs found
Unambiguous determination of gravitational waveforms from binary black hole mergers
Gravitational radiation is properly defined only at future null infinity
(\scri), but in practice it is estimated from data calculated at a finite
radius. We have used characteristic extraction to calculate gravitational
radiation at \scri for the inspiral and merger of two equal mass non-spinning
black holes. Thus we have determined the first unambiguous merger waveforms for
this problem. The implementation is general purpose, and can be applied to
calculate the gravitational radiation, at \scri, given data at a finite
radius calculated in another computation.Comment: 4 pages, 3 figures, published versio
Strategies for the characteristic extraction of gravitational waveforms
We develop, test, and compare new numerical and geometrical methods for improving the accuracy of extracting waveforms using characteristic evolution. The new numerical method involves use of circular boundaries to the stereographic grid patches which cover the spherical cross sections of the outgoing null cones. We show how an angular version of numerical dissipation can be introduced into the characteristic code to damp the high frequency error arising form the irregular way the circular patch boundary cuts through the grid. The new geometric method involves use of the Weyl tensor component Psi4 to extract the waveform as opposed to the original approach via the Bondi news function. We develop the necessary analytic and computational formula to compute the O(1/r) radiative part of Psi4 in terms of a conformally compactified treatment of null infinity. These methods are compared and calibrated in test problems based upon linearized waves
Dynamic Poisson Factorization
Models for recommender systems use latent factors to explain the preferences
and behaviors of users with respect to a set of items (e.g., movies, books,
academic papers). Typically, the latent factors are assumed to be static and,
given these factors, the observed preferences and behaviors of users are
assumed to be generated without order. These assumptions limit the explorative
and predictive capabilities of such models, since users' interests and item
popularity may evolve over time. To address this, we propose dPF, a dynamic
matrix factorization model based on the recent Poisson factorization model for
recommendations. dPF models the time evolving latent factors with a Kalman
filter and the actions with Poisson distributions. We derive a scalable
variational inference algorithm to infer the latent factors. Finally, we
demonstrate dPF on 10 years of user click data from arXiv.org, one of the
largest repository of scientific papers and a formidable source of information
about the behavior of scientists. Empirically we show performance improvement
over both static and, more recently proposed, dynamic recommendation models. We
also provide a thorough exploration of the inferred posteriors over the latent
variables.Comment: RecSys 201
Ill-posedness in the Einstein equations
It is shown that the formulation of the Einstein equations widely in use in
numerical relativity, namely, the standard ADM form, as well as some of its
variations (including the most recent conformally-decomposed version), suffers
from a certain but standard type of ill-posedness. Specifically, the norm of
the solution is not bounded by the norm of the initial data irrespective of the
data. A long-running numerical experiment is performed as well, showing that
the type of ill-posedness observed may not be serious in specific practical
applications, as is known from many numerical simulations.Comment: 13 pages, 3 figures, accepted for publication in Journal of
Mathematical Physics (to appear August 2000
Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts
The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power
Phase Transitions in the Spin-Half J_1--J_2 Model
The coupled cluster method (CCM) is a well-known method of quantum many-body
theory, and here we present an application of the CCM to the spin-half J_1--J_2
quantum spin model with nearest- and next-nearest-neighbour interactions on the
linear chain and the square lattice. We present new results for ground-state
expectation values of such quantities as the energy and the sublattice
magnetisation. The presence of critical points in the solution of the CCM
equations, which are associated with phase transitions in the real system, is
investigated. Completely distinct from the investigation of the critical
points, we also make a link between the expansion coefficients of the
ground-state wave function in terms of an Ising basis and the CCM ket-state
correlation coefficients. We are thus able to present evidence of the
breakdown, at a given value of J_2/J_1, of the Marshall-Peierls sign rule which
is known to be satisfied at the pure Heisenberg point (J_2 = 0) on any
bipartite lattice. For the square lattice, our best estimates of the points at
which the sign rule breaks down and at which the phase transition from the
antiferromagnetic phase to the frustrated phase occurs are, respectively, given
(to two decimal places) by J_2/J_1 = 0.26 and J_2/J_1 = 0.61.Comment: 28 pages, Latex, 2 postscript figure
Continuum coupled cluster expansion
We review the basics of the coupled-cluster expansion formalism for numerical
solutions of the many-body problem, and we outline the principles of an
approach directed towards an adequate inclusion of continuum effects in the
associated single-energy spectrum. We illustrate our findings by considering
the simple case of a single-particle quantum mechanics problem.Comment: 16 pages, 1 figur
General relativistic null-cone evolutions with a high-order scheme
We present a high-order scheme for solving the full non-linear Einstein
equations on characteristic null hypersurfaces using the framework established
by Bondi and Sachs. This formalism allows asymptotically flat spaces to be
represented on a finite, compactified grid, and is thus ideal for far-field
studies of gravitational radiation. We have designed an algorithm based on
4th-order radial integration and finite differencing, and a spectral
representation of angular components. The scheme can offer significantly more
accuracy with relatively low computational cost compared to previous methods as
a result of the higher-order discretization. Based on a newly implemented code,
we show that the new numerical scheme remains stable and is convergent at the
expected order of accuracy.Comment: 24 pages, 3 figure
Data management for JGOFS: Theory and design
The Joint Global Ocean Flux Study (JGOFS), currently being organized under the auspices of the Scientific Committee for Ocean Research (SCOR), is intended to be a decade long internationally coordinated program. The main goal of JGOFS is to determine and understand on a global scale the processes controlling the time-varying fluxes of carbon and associated biogenic elements in the ocean and to evaluate the related exchanges with the atmosphere, sea floor and continental boundaries. 'A long-term goal of JGOFS will be to establish strategies for observing, on long time scales, changes in ocean biogeochemical cycles in relation to climate change'. Participation from a large number of U.S. and foreign institutions is expected. JGOFS investigators have begun a set of time-series measurements and global surveys of a wide variety of biological, chemical and physical quantities, detailed process-oriented studies, satellite observations of ocean color and wind stress and modeling of the bio-geochemical processes. These experiments will generate data in amounts unprecedented in the biological and chemical communities; rapid and effortless exchange of these data will be important to the success of JGOFS
- …