148 research outputs found

    The aetiology of rickets-like lower limb deformities in Malawian children

    Get PDF
    Summary: Debilitating rickets-like lower limb deformities are common in children throughout the world, particularly in Malawi, Africa where the causes are unknown. We have identified that Blount disease and calcium deficiency rickets are the likely causes of these deformities and propose calcium supplementation as a potential treatment of Malawian rickets. Introduction: Surgical correction of rickets-like lower limb deformities is the most common paediatric operation performed at Beit Cure Orthopaedic Hospital, Malawi. The aim of this study was to investigate the aetiology of these deformities. Methods: Children with a tibio-femoral angle of deformity >20° were enrolled (n = 42, 3.0–15.0 years). Anthropometric and early life and well-being data were collected. Early morning serum and urine samples were collected on the morning of the operation for markers of calcium and phosphate homeostasis. Knee radiographs were obtained, and the children were diagnosed with either Blount (BD, n = 22) or evidence of rickets disease (RD, n = 20). As BD is a mechanical rather than metabolic disease, BD were assumed to be biochemically representative of the local population and thus used as a local reference for RD. Results: There were no differences in anthropometry or early life experiences between BD and RD. Parathyroid hormone (PTH), 1,25-dihydroxyvitamin D, total alkaline phosphatase and urinary phosphate were significantly higher and serum phosphate, 25-hydroxyvitamin D (25OHD) and tubular maximal reabsorption of phosphate significantly lower in RD than BD. There was no difference in serum calcium, fibroblast growth factor 23 or markers of iron status between groups. All children had 25OHD > 25 nmol/L. Conclusions: Vitamin D deficiency is not implicated in the aetiology of RD or BD in Malawian children. The cause of RD in Malawi is likely to be dietary calcium deficiency leading to elevated PTH resulting in increased losses of phosphate from the bone and glomerular filtrate. The causes of BD remain unclear; there was no evidence in support of previously suggested risk factors such as being overweight or starting to walk early. Prior to surgical intervention, supplementation with calcium should be considered for children with RD

    Biological characteristics of a cold-adapted influenza A virus mutation residing on a polymerase gene

    Full text link
    The biological function of a cold-adapted (ca) mutation residing on the PB2 gene of an influenza A/Ann Arbor/6/60 (A/AA/6/60) ca variant virus in the viral replication cycle at 25° C was studied. The viral polypeptide synthesis of A/AA/6/60 ca variant at 25° C was evident approximately 6 hours earlier than the wild type (wt) virus and yielded twice as many products. The quantitative analysis of viral complementary RNA (cRNA), synthesized in the presence of cycloheximide, revealed that A/AA/6/60 ca variant and a single gene reassortant that contains only the PB2 gene of the ca variant with remaining genes of the wt virus produced equal amount of cRNA at 25° and 33° C, which was an amount approximately four fold greater than the wt virus' cRNA synthesized at 25° C. These results strongly suggest that the ca mutation residing on the PB2 gene of A/AA/6/60 ca variant affects the messenger RNA synthesis at 25° C in the primary transcription.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41692/1/705_2005_Article_BF01310893.pd

    Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design

    Get PDF
    A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme

    Testing a prediction model for the H-mode density pedestal against JET-ILW pedestals

    Get PDF
    The neutral ionisation model proposed by Groebner et al (2002 Phys. Plasmas 9 2134) to determine the plasma density profile in the H-mode pedestal, is extended to include charge exchange processes in the pedestal stimulated by the ideas of Mahdavi et al (2003 Phys. Plasmas 10 3984). The model is then tested against JET H-mode pedestal data, both in a 'standalone' version using experimental temperature profiles and also by incorporating it in the Europed version of EPED. The model is able to predict the density pedestal over a wide range of conditions with good accuracy. It is also able to predict the experimentally observed isotope effect on the density pedestal that eludes simpler neutral ionization models

    Predictive JET current ramp-up modelling using QuaLiKiz-neural-network

    Get PDF
    This work applies the coupled JINTRAC and QuaLiKiz-neural-network (QLKNN) model on the ohmic current ramp-up phase of a JET D discharge. The chosen scenario exhibits a hollow T-e profile attributed to core impurity accumulation, which is observed to worsen with the increasing fuel ion mass from D to T. A dynamic D simulation was validated, evolving j, n(e), T-e, T-i, n(Be), n(Ni), and n(W) for 7.25 s along with self-consistent equilibrium calculations, and was consequently extended to simulate a pure T plasma in a predict-first exercise. The light impurity (Be) accounted for Z(eff) while the heavy impurities (Ni, W) accounted for Prad. This study reveals the role of transport on the Te hollowing, which originates from the isotope effect on the electron-ion energy exchange affecting T-i. This exercise successfully affirmed isotopic trends from previous H experiments and provided engineering targets used to recreate the D q-profile in T experiments, demonstrating the potential of neural network surrogates for fast routine analysis and discharge design. However, discrepancies were found between the impurity transport behaviour of QuaLiKiz and QLKNN, which lead to notable T-e hollowing differences. Further investigation into the turbulent component of heavy impurity transport is recommended

    The role of ETG modes in JET-ILW pedestals with varying levels of power and fuelling

    Get PDF
    We present the results of GENE gyrokinetic calculations based on a series of JET-ITER-like-wall (ILW) type I ELMy H-mode discharges operating with similar experimental inputs but at different levels of power and gas fuelling. We show that turbulence due to electron-temperature-gradient (ETGs) modes produces a significant amount of heat flux in four JET-ILW discharges, and, when combined with neoclassical simulations, is able to reproduce the experimental heat flux for the two low gas pulses. The simulations plausibly reproduce the high-gas heat fluxes as well, although power balance analysis is complicated by short ELM cycles. By independently varying the normalised temperature gradients (omega(T)(e)) and normalised density gradients (omega(ne )) around their experimental values, we demonstrate that it is the ratio of these two quantities eta(e) = omega(Te)/omega(ne) that determines the location of the peak in the ETG growth rate and heat flux spectra. The heat flux increases rapidly as eta(e) increases above the experimental point, suggesting that ETGs limit the temperature gradient in these pulses. When quantities are normalised using the minor radius, only increases in omega(Te) produce appreciable increases in the ETG growth rates, as well as the largest increases in turbulent heat flux which follow scalings similar to that of critical balance theory. However, when the heat flux is normalised to the electron gyro-Bohm heat flux using the temperature gradient scale length L-Te, it follows a linear trend in correspondence with previous work by different authors

    Disruption prediction at JET through deep convolutional neural networks using spatiotemporal information from plasma profiles

    Get PDF
    In view of the future high power nuclear fusion experiments, the early identification of disruptions is a mandatory requirement, and presently the main goal is moving from the disruption mitigation to disruption avoidance and control. In this work, a deep-convolutional neural network (CNN) is proposed to provide early detection of disruptive events at JET. The CNN ability to learn relevant features, avoiding hand-engineered feature extraction, has been exploited to extract the spatiotemporal information from 1D plasma profiles. The model is trained with regularly terminated discharges and automatically selected disruptive phase of disruptions, coming from the recent ITER-like-wall experiments. The prediction performance is evaluated using a set of discharges representative of different operating scenarios, and an in-depth analysis is made to evaluate the performance evolution with respect to the considered experimental conditions. Finally, as real-time triggers and termination schemes are being developed at JET, the proposed model has been tested on a set of recent experiments dedicated to plasma termination for disruption avoidance and mitigation. The CNN model demonstrates very high performance, and the exploitation of 1D plasma profiles as model input allows us to understand the underlying physical phenomena behind the predictor decision

    Comparing pedestal structure in JET-ILW H-mode plasmas with a model for stiff ETG turbulent heat transport

    Get PDF
    A predictive model for the electron temperature profile of the H-mode pedestal is described, and its results are compared with the pedestal structure of JET-ILW plasmas. The model is based on a scaling for the gyro-Bohm normalized, turbulent electron heat flux qe/qe,gB resulting from electron temperature gradient (ETG) turbulence, derived from results of nonlinear gyrokinetic (GK) calculations for the steep gradient region. By using the local temperature gradient scale length L-Te in the normalization, the dependence of q(e)/q(e,g)B on the normalized gradients R/L-Te and R/(Lne) can be represented by a unified scaling with the parameter eta(e) = L-ne/L-Te, to which the linear stability of ETG turbulence is sensitive when the density gradient is sufficiently steep. For a prescribed density profile, the value of R/L-Te determined from this scaling, required to maintain a constant electron heat flux qe across the pedestal, is used to calculate the temperature profile. Reasonable agreement with measurements is found for different cases, the model providing an explanation of the relative widths and shifts of the T-e and n(e) profiles, as well as highlighting the importance of the separatrix boundary conditions. Other cases showing disagreement indicate conditions where other branches of turbulence might dominate.This article is part of a discussion meeting issue "H-mode transition and pedestal studies in fusion plasmas'

    A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors

    Get PDF
    corecore