4 research outputs found

    Possible petrogenetic associations among igneous components in North Massif soils: Evidence in 2-4 mm soil particles from 76503

    Get PDF
    Studies of Apollo 17 highland igneous rocks and clasts in breccias from the North and South Massifs have described magnesian troctolite, norite, anorthositic gabbro, dunite, spinel cataclasites, and granulitic lithologies that may have noritic anothosite or anorthositic norite/gabbro as igneous precursors, and have speculated on possible petrogenetic relationships among these rock types. Mineral compositions and relative proportions of plagioclase and plagioclase-olivine particles in samples 76503 indicate that the precursor lithology of those particles were troctolitic anorthosite, not troctolite. Mineral and chemical compositions of more pyroxene-rich, magnesian breccias and granulites in 76503 indicate that their precursor lithology was anorthositic norite/gabbro. The combination of mineral compositions and whole-rock trace-element compositional trends supports a genetic relationship among these two groups as would result from differentiation of a single pluton. Although highland igneous lithologies in Apollo 17 materials have been described previously, the proportions of different igneous lithologies present in the massifs, their frequency of association, and how they are related are not well known. We consider the proportions of, and associations among, the igneous lithologies found in a North Massif soil, which may represent those of the North Massif or a major part of it

    Composition of Apollo 17 core 76001

    Get PDF
    Core 76001 is a single drive tube containing a column of regolith taken at the base of the North Massif, station 6, Apollo 17. The core material is believed to have accumulated through slow downslope mass wasting from the massif. As a consequence, the core soil is mature throughout its length. Results of INAA for samples taken every half centimeter along the length of the core indicate that there is only minor systematic compositional variation with depth. Concentrations of elements primarily associated with mare basalt (Sc, Fe) and noritic impact melt breccia (Sm) decrease slightly with depth, particularly between 20 cm and the bottom of the core at 32 cm depth. This is consistent with petrographic studies that indicate a greater proportion of basalt and melt breccia in the top part of the core. However, Sm/Sc and La/Sm ratios are remarkably constant with depth, indicating no variation in the ratio of mare material to Sm-rich highlands material with depth. Other than these subtle changes, there is no compositional evidence for the two stratigraphic units (0-20 cm and 20-32 cm) defined on the basis of modal petrography, although all samples with anomalously high Ni concentrations (Fe-Ni metal nuggets) occur above 20 cm depth

    North Massif lithologies and chemical compositions viewed from 2-4 mm particles of soil sample 76503

    Get PDF
    We identify the lithologic and compositional components of soil 76503 based on INAA of 243 2-4-mm particles and 72 thin sections from these and associated 1-2-mm particles (76502). We present a statistical distribution of the major compositional types as the first step of a detailed comparative study of the North and South Massifs. The soil sample was collected well away from any boulder and is more representative of typical North Massif material than any single large rock or boulder sample. So far, our examination of the 76503 particles has provided a better definition of precursor igneous lithologies and their petrogenetic relationships. It has enabled us to refine the nature of mixing components for the North Massif less than 1-mm fines. It has confirmed the differences in lithologies and their proportions between materials of the North and South Massifs; e.g., the North Massif is distinguished by the absence of a 72275-type KREEP component, the abundance of a highly magnesian igneous component, and the absence of certain types of melt compositions found in the South Massif samples

    A comprehensive transcriptional map of primate brain development

    No full text
    The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny
    corecore