16,646 research outputs found
Combined pyrolysis and radiochemical gas chromatography for studying the thermal degradation of polymers
Pyrolysis gas chromatography and radioactive tracer techniques have
been used independently to study the thermal degradation of polymers. In
these laboratories the two techniques have been combined to elucidate
some of the mechanisms of the thermal degradation of epoxy resins and
polyimides. This paper describes the apparatus developed for this work
Propagation of sound from aircraft ground operations
Atmospheric absorption effects on sound propagation losses during aircraft ground operation
The propagation of sound from airport ground operations
Noise measurements of sound propagation related to jet aircraft takeoff
Recommended from our members
Reliability modeling of a 1-out-of-2 system: Research with diverse Off-the-shelf SQL database servers
Fault tolerance via design diversity is often the only viable way of achieving sufficient dependability levels when using off-the-shelf components. We have reported previously on studies with bug reports of four open-source and commercial off-the-shelf database servers and later release of two of them. The results were very promising for designers of fault-tolerant solutions that wish to employ diverse servers: very few bugs caused failures in more than one server and none caused failure in more than two. In this paper we offer details of two approaches we have studied to construct reliability growth models for a 1-out-of-2 fault-tolerant server which utilize the bug reports. The models presented are of practical significance to system designers wishing to employ diversity with off-the-shelf components since often the bug reports are the only direct dependability evidence available to them
Ab initio study of the mechanism of carboxylic acids cross-ketonization on monoclinic zirconia via condensation to beta-keto acids followed by decarboxylation
Catalytic mechanism of acetic and isobutyric acids mixture conversion into two symmetrical and one cross-ketone product on monoclinic zirconia (111) surface was extensively modeled by Density Functional Theory for periodic structures. Several options were evaluated for each mechanistic step by calculating their reaction rate constants. The best option for each kinetically relevant step was chosen by matching calculated rates of reaction with experimental values.
Four zirconium surface atoms define each catalytic site. The most favorable pathway includes condensation between surface carboxylates, one of which is enolized through alpha-hydrogen abstraction by lattice oxygen. Condensation of gas phase molecules with the enolized carboxylate on surface is less attainable.
The kinetic scheme considers all steps being reversible, except for decarboxylation. The equilibrium constant of the enolization step and the rate constant of the condensation step define the global reaction rate for non-bulky acetic acid. For bulky isobutyric acid, decarboxylation step is added to the kinetic scheme as kinetically significant, while hydrocarbonate departure may also compete with the decarboxylation. Electronic and steric effect of alkyl substituents on the decarboxylation step is disclosed.
The cross-selectivity is controlled by both condensation and decarboxylation steps. None of the mechanistic steps require metal oxide to be reducible/oxidizable
Flux lattice melting in the high Tc superconductors
One of the important issues for technological application of the high temperature superconductors is their behavior in a magnetic field. A variety of experiments including electrical transport, mechanical oscillators, and magnetic decoration have suggested that these magnetic properties will make applications more difficult than originally anticipated. These experiments and their results are briefly discussed
Recommended from our members
Toward a Formalism for Conservative Claims about the Dependability of Software-Based Systems
In recent work, we have argued for a formal treatment of confidence about the claims made in dependability cases for software-based systems. The key idea underlying this work is "the inevitability of uncertainty": It is rarely possible to assert that a claim about safety or reliability is true with certainty. Much of this uncertainty is epistemic in nature, so it seems inevitable that expert judgment will continue to play an important role in dependability cases. Here, we consider a simple case where an expert makes a claim about the probability of failure on demand (pfd) of a subsystem of a wider system and is able to express his confidence about that claim probabilistically. An important, but difficult, problem then is how such subsystem (claim, confidence) pairs can be propagated through a dependability case for a wider system, of which the subsystems are components. An informal way forward is to justify, at high confidence, a strong claim, and then, conservatively, only claim something much weaker: "I'm 99 percent confident that the pfd is less than 10-5, so it's reasonable to be 100 percent confident that it is less than 10-3." These conservative pfds of subsystems can then be propagated simply through the dependability case of the wider system. In this paper, we provide formal support for such reasoning
The frustrated Heisenberg antiferromagnet on the honeycomb lattice: -- model
We study the ground-state (gs) phase diagram of the frustrated spin-1/2
-- antiferromagnet with () on the
honeycomb lattice, using the coupled-cluster method. We present results for the
ground-state energy, magnetic order parameter and plaquette valence-bond
crystal (PVBC) susceptibility. We find a paramagnetic PVBC phase for
, where and . The transition at
to the N\'{e}el phase seems to be a continuous deconfined
transition (although we cannot exclude a very narrow intermediate phase in the
range ), while that at is of
first-order type to another quasiclassical antiferromagnetic phase that occurs
in the classical version of the model only at the isolated and highly
degenerate critical point . The spiral phases that are present
classically for all values are absent for all .Comment: 6 pages, 5 figure
Hierarchical Models for Independence Structures of Networks
We introduce a new family of network models, called hierarchical network
models, that allow us to represent in an explicit manner the stochastic
dependence among the dyads (random ties) of the network. In particular, each
member of this family can be associated with a graphical model defining
conditional independence clauses among the dyads of the network, called the
dependency graph. Every network model with dyadic independence assumption can
be generalized to construct members of this new family. Using this new
framework, we generalize the Erd\"os-R\'enyi and beta-models to create
hierarchical Erd\"os-R\'enyi and beta-models. We describe various methods for
parameter estimation as well as simulation studies for models with sparse
dependency graphs.Comment: 19 pages, 7 figure
- …