125 research outputs found
A mineralogical instrument for planetary applications
The mineralogy of a planetary surface can be used to identify the provenance of soil or sediment and reveal the volcanic, metamorphic and/or sedimentological history of a particular region. We have discussed elsewhere the applications and the instrument design of possible X-ray diffraction and X-ray fluorescence (XRD/XRF) devices for the mineralogical characterization of planetary surfaces. In this abstract we evaluate some aspects of sample-detector geometry and sample collection strategies
ADVANCED COMPUTATIONAL ANALYSIS OF DISORDERED MATERIALS AND CLAY MINERALS
Final report describing a three-year research project applying various methods to study the structures of crystalline solids and also apply to polycrystalline disordered materials
Recommended from our members
Emissivity spectrum of a large "dark streak" from themis infrared imagery
'Dark streaks', also known as 'slope streaks', are unusual surface features found on Mars that are known to appear and fade away on timescales of years. Various explanations have been proposed for their origin and composition, including dry avalanches and wet debris or precipitates from brines. Previous investigations have been based on analysis of panchromatic imagery and altimetry from Viking and Mars Global Surveyor missions. We have obtained an infrared emissivity spectrum of a large dark streak on the north western edge of Olympus Mons, using imagery from the THEMIS instrument on the Mars Odyssey 2001 spacecraft
Sources of Sulfate Found in Mounds and Lakes at the Lewis Cliffs Ice Tongue, Transantarctic
Massive but highly localized Na-sulfate mounds (mirabilite, Na2SO4.10H2O) have been found at the terminal moraine of the Lewis Cliffs Ice Tongue (LCIT), Antarctica. (Sigma)34S and (Sigma)18O values of LCIT mirabilite range from +48.8 to +49.3% (CDT), and -16.6 to -17.1% (V-SMOW), respectively, while (Delta)17O average -0.37% (V-SMOW). LCIT mirabilite mounds are isotopically different from other mirabilite mounds found in coastal regions of Antarctica, which have isotope values close to seawater compositions. (Sigma)18O and (Delta)17O values suggest the incorporation of isotopically light glacial water. Data point to initial sulfate formation in an anoxic water body, either as a stratified anoxic deep lake on the surface, a sub-glacial water reservoir, or a sub-glacial lake. Several surface lakes of varying size are also present within this region of the LCIT, and in some cases are adjacent to the mirabilite mounds. O and D isotope compositions of surface lakes confirm they are derived from a mixture of glacial ice and snow that underwent moderate evaporation. (Sigma)18O and (Sigma)D (V-SMOW) values of snow, ice, and lake water range from -64.2 to -29.7%, and -456.0 to -231.7%, respectively. However, the isotope chemistry of these surface lakes is extremely different from the mounds. Dissolved SO4-2 (Sigma)34S and (Sigma)18O values range from +12.0 to +20.0% and -12.8 to -22.2% (the most negative (Sigma)18O of terrestrial sulfate ever reported), respectively, with sulfate (Delta)17O ranging from +0.93 to 2.24%. Ion chromatography data show that lake water is fresh to brackish in origin, with TDS less than 1500 ppm, and sulfate concentration less than 431 ppm. Isotope and chemical data suggest that these lakes are unlikely the source of the mirabilite mounds. We suggest that lake water sulfate is potentially composed of a mixture of atmospheric sulfate and minor components of sulfate of weathering origin, much like the sulfate in the polar plateau soils of the McMurdo Dry Valleys. A simple model explains mirabilite mound formation at the LCIT. Sulfur redox processes could occur sub-glacially as a result of liquid-water-based glacial conditions (Alpine style glacier), most likely formed by pressure melting of overlying ice (Aharon, GCA, 52, 2321-2331). We suggest that the aqueous base of the LCIT contains dissolved SO42- and is anoxic where sulfate reduction to H2S, HS-, or native sulfur takes place. Sulfide is removed by either precipitation as sulfide minerals or by escape of H2S (neither of which have been observed). Mirabilite precipitation is likely the result of evaporation or freezing of sulfate-rich brines as they reach the surface where they manifest themselves as mounds. Pressure from the overlying ice contributing to a pressure-melting scenario that creates the sub-glacial aqueous environment also contributes to the mechanism of upward transport of the sulfate-rich fluids. Further evidence to support this upward transport model comes from the nature of ice motion at the LCIT. Cassidy et al (Meteoritics, 27, 490-525, 1992) pointed out that it is the vertical ice motion in this area that creates the meteorite-stranding surface that could also account for upward transport of sulfate-rich fluids. Alternatively, mirabilite was deposited in a similar condition as present-day coastal Antarctica when the LCIT was wetter and warme
The Mineralogical and Chemical Case for Habitability at Yellowknife Bay, Gale Crater, Mars
Sediments of the Yellowknife Bay formation (Gale crater) include the Sheepbed member, a mudstone cut by light-toned veins. Two drill samples, John Klein and Cumberland, were collected and analyzed by the CheMin XRD/XRF instrument and the Sample Analysis at Mars (SAM) evolved gas and isotopic analysis suite of instruments. Drill cuttings were also analyzed by the Alpha Particle X-ray Spectrometer (APXS) for bulk composition. The CheMin XRD analysis shows that the mudstone contains basaltic minerals (Fe-forsterite, augite, pigeonite, plagioclase), as well as Fe-oxide/hydroxides, Fe-sulfides, amorphous materials, and trioctahedral phyllosilicates. SAM evolved gas analysis of higher-temperature OH matches the CheMin XRD estimate of ~20% clay minerals in the mudstone. The light-toned veins contain Ca-sulfates; anhydrite and bassanite are detected by XRD but gypsum is also indicated from Mastcam spectral mapping. These sulfates appear to be almost entirely restricted to late-diagenetic veins. The sulfate content of the mudstone matrix itself is lower than other sediments analyzed on Mars. The presence of phyllosilicates indicates that the activity of water was high during their formation and/or transport and deposition (should they have been detrital). Lack of chlorite places limits on the maximum temperature of alteration (likely <100 C). The presence of Ca-sulfates rather than Mg- or Fe-sulfates suggests that the pore water pH was near-neutral and of relatively low ionic strength (although x-ray amorphous Mg-and Fe- sulfates could be present and undetectable by CheMin). The presence of Fe and S in both reduced and oxidized states represents chemical disequilibria that could have been utilized by chemolithoautotrophic biota, if present. When compared to the nearby Rocknest sand shadow mineralogy or the normative mineralogy of Martian soil, both John Klein and Cumberland exhibit a near-absence of olivine and a surplus of magnetite (7-9% of the crystalline component). The magnetite is interpreted as an authigenic product formed when olivine was altered to phyllosilicate. Saponitization of olivine (a process analogous to serpentinization) could have produced H2 in situ. Indeed, early diagenetic hollow nodules ("minibowls") present in the Cumberland mudstone are interpreted by some as forming when gas bubbles accumulated in the unconsolidated mudstone. Lastly, all of these early diagenetic features appear to have been preserved with minimal alteration since their formation, as indicated by the ease of drilling (weak lithification, lack of cementing phases), the presence of 20-30% amorphous material, and the late-stage fracturing with emplacement of calcium sulfate veins and minibowl infills, where they were intersected by veins. A rough estimate of the minimum duration of the lacustrine environment is provided by the minimum thickness of the Sheepbed member. Given 1.5 meters, and applying a mean sediment accumulation rate for lacustrine strata of 1 m/1000 yrs yields a duration of 1,500 years. If the aqueous environments represented by overlying strata are considered, such as Gillespie Lake and Shaler, then this duration increases. The Sheepbed mudstone meets all the requirements of a habitable environment: Aqueous deposition at clement conditions of P, T, pH, Eh and ionic strength, plus the availability of sources of chemical energy
Antarctic Mirabilite Mounds as Mars Analogs: The Lewis Cliffs Ice Tongue Revisited
It has been proposed, based on geomorphic and geochemical arguments, that subsurface water has played an important role in the history of water on the planet Mars [1]. Subsurface water, if present, could provide a protected and long lived environment for potential life. Discovery of gullies [2] and recurring slopes [3] on Mars suggest the potential for subsurface liquid water or brines. Recent attention has also focused on small (< approx. 1km dia.) mound-like geomorphic features discovered within the mid to high latitudes on the surface of Mars which may be caused by eruptions of subsurface fluids [4, 5]. We have identified massive but highly localized Na-sulfate deposits (mirabilite mounds, Na2SO4 .10H2O) that may be derived from subsurface fluids and may provide insight into the processes associated with subsurface fluids on Mars. The mounds are found on the end moraine of the Lewis Cliffs Ice Tongue (LCIT) [6] in the Transantarctic Mountains, Antarctica, and are potential terrestrial analogs for mounds observed on the martian surface. The following characteristics distinguish LCIT evaporite mounds from other evaporite mounds found in Antarctic coastal environments and/or the McMurdo Dry Valleys: (1) much greater distance from the open ocean (approx.500 km); (2) higher elevation (approx.2200 meters); and (3) colder average annual temperature (average annual temperature = -30 C for LCIT [7] vs. 20 C at sea level in the McMurdo region [8]. Furthermore, the recent detection of subsurface water ice (inferred as debris-covered glacial ice) by the Mars Reconnaissance Orbiter [9] supports the use of an Antarctic glacial environment, particularly with respect to the mirabilite deposits described in this work, as an ideal terrestrial analog for understanding the geochemistry associated with near-surface martian processes. S and O isotopic compositions
Chemical weathering signatures from Mt. Achernar Moraine, Central Transantarctic Mountains I: Subglacial sediments compared with underlying rock
In order to determine chemical weathering rates on the subglacial land surface of Antarctica, we compare the composition and mineralogy of freshly emerging fine sediments to that of the underlying bedrock, as represented by glacially derived cobble-sized clasts. Samples were collected from Mt. Achernar Moraine, a large blue ice moraine, where subglacial material naturally emerges through sublimation of the surrounding ice. Both rocks and sediments were analyzed for total elemental composition, mineral abundance by X-ray diffraction, and by sequential extractions targeting chemical weathering products. The fine sediment fraction is significantly enriched in chemical weathering products and depleted in primary minerals compared with the cobble clasts. The alteration pathways consist primarily of the development of smectite, kaolinite, carbonate minerals, and amorphous material. Extensive Fe oxidation is evidenced by a decline in magnetic susceptibility and by increases in extractable Fe. If we assume the only input into the subglacial system is the water and ice-trapped gas supplied by basal melt, the net chemical alteration is explained through oxidation of organic matter equal to ∼0.7% of the bedrock mass and subsequent carbonation weathering. The underlying sedimentary rock is sufficiently rich in organic matter for this pathway to be plausible. For the O2 that is oxidizing organic matter to be supplied by basal meltwater, water fluxes would need to be three orders of magnitude larger than sediment fluxes. Independent models of basal melt and sediment transport at our field site confirm that such a difference between water and sediment flux is likely at the study site. The rate of subglacial carbonation weathering inferred from the Mt. Achernar Moraine site may be comparable to that found in high latitude subaerial environments. If Mt. Achernar Moraine is typical of other Antarctic sites, the subglacial land surface of Antarctica does play a role in global geochemical cycling
CheMin: A Definitive Mineralogy Instrument in the Analytical Laboratory of the Mars Science Laboratory
An important goal of the Mars Science Laboratory (MSL '09) mission is the determination of definitive mineralogy and chemical composition. CheMin is a miniature X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that has been chosen for the analytical laboratory of MSL. CheMin utilizes a miniature microfocus source cobalt X-ray tube, a transmission sample cell and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D X-ray diffraction patterns and X-ray fluorescence spectra from powdered or crushed samples. A diagrammatic view of the instrument is shown. Additional information is included in the original extended abstract
Recommended from our members
Water-bearing minerals on mars: source of observed mid-latitude water?
The Odyssey spacecraft documented the existence of heterogeneously distributed hydrogen at martian mid-latitudes, suggesting that large areas of the near-equatorial highlands contain near-surface deposits of 'chemically and/or physically bound H20 and/or OH' in amounts up to 3 .8% equivalent H20. Shallow occurrences of water ice are not stable near the martian equator, making the hydrogen deposits at these latitudes somewhat enigmatic. Clay minerals and zeolites have both been proposed as possible water-bearing constituents on Mars, and both are common terrestrial alteration products of hydrovolcanic basaltic ashes and palagonitic material comparable to those that may be widespread on Mars. Smectites within martian meteorites, attributed to hydrous alteration on Mars rather than on Earth, provide direct evidence of clay minerals from Mars. In addition, new thermal emission spectrometer (TES) data provide good evidence for unspecified zeolites in martian surface dust [6] . The nature of the hydrogen-containing material observed in the equatorial martian regolith is of particular importance to the question of whether hydrous minerals have formed in the past on Mars. Also, whether these minerals exist in a hydrated (i .e., containing H2O molecules in their structures) or dehydrated state is a crucial question . The existence of hydrous minerals is also important in connection with their possible role in affecting the diurnal variation of the martian atmosphere, in their potential role in unraveling the paleohydrology and paleobiology of Mars, and in their possible use as a water resource to support exploration of the martian mid-latitudes
- …