2,110 research outputs found
Integrated Diamond Optics for Single Photon Detection
Optical detection of single defect centers in the solid state is a key
element of novel quantum technologies. This includes the generation of single
photons and quantum information processing. Unfortunately the brightness of
such atomic emitters is limited. Therefore we experimentally demonstrate a
novel and simple approach that uses off-the-shelf optical elements. The key
component is a solid immersion lens made of diamond, the host material for
single color centers. We improve the excitation and detection of single
emitters by one order of magnitude, as predicted by theory.Comment: 10 pages, 3 figure
Context-Free Path Queries on RDF Graphs
Navigational graph queries are an important class of queries that canextract
implicit binary relations over the nodes of input graphs. Most of the
navigational query languages used in the RDF community, e.g. property paths in
W3C SPARQL 1.1 and nested regular expressions in nSPARQL, are based on the
regular expressions. It is known that regular expressions have limited
expressivity; for instance, some natural queries, like same generation-queries,
are not expressible with regular expressions. To overcome this limitation, in
this paper, we present cfSPARQL, an extension of SPARQL query language equipped
with context-free grammars. The cfSPARQL language is strictly more expressive
than property paths and nested expressions. The additional expressivity can be
used for modelling graph similarities, graph summarization and ontology
alignment. Despite the increasing expressivity, we show that cfSPARQL still
enjoys a low computational complexity and can be evaluated efficiently.Comment: 25 page
Detecting Generalized Synchronization Between Chaotic Signals: A Kernel-based Approach
A unified framework for analyzing generalized synchronization in coupled
chaotic systems from data is proposed. The key of the proposed approach is the
use of the kernel methods recently developed in the field of machine learning.
Several successful applications are presented, which show the capability of the
kernel-based approach for detecting generalized synchronization. It is also
shown that the dynamical change of the coupling coefficient between two chaotic
systems can be captured by the proposed approach.Comment: 20 pages, 15 figures. massively revised as a full paper; issues on
the choice of parameters by cross validation, tests by surrogated data, etc.
are added as well as additional examples and figure
Mechanism of efficient anti-Markovnikov olefin hydroarylation catalyzed by homogeneous Ir(III) complexes
The mechanism of the hydroarylation reaction between unactivated olefins (ethylene, propylene, and styrene) and benzene catalyzed by [(R)Ir(μ-acac-O,O,C^3)-(acac-O,O)_2]_2 and [R-Ir(acac-O,O)_2(L)] (R = acetylacetonato, CH_3, CH_2CH_3, Ph, or CH_2CH_2Ph, and L = H_2O or pyridine) Ir(III) complexes was studied by experimental methods. The system is selective for generating the anti-Markovnikov product of linear alkylarenes (61 : 39 for benzene + propylene and 98 : 2 for benzene + styrene). The reaction mechanism was found to follow a rate law with first-order dependence on benzene and catalyst, but a non-linear dependence on olefin. ^(13)C-labelling studies with CH_3^(13)CH_2-Ir-Py showed that reversible β-hydride elimination is facile, but unproductive, giving exclusively saturated alkylarene products. The migration of the ^(13)C-label from the α to β-positions was found to be slower than the C–H activation of benzene (and thus formation of ethane and Ph-d_5-Ir-Py). Kinetic analysis under steady state conditions gave a ratio of the rate constants for CH activation and β-hydride elimination (k_(CH): k_β) of 0.5. The comparable magnitude of these rates suggests a common rate determining transition state/intermediate, which has been shown previously with B3LYP density functional theory (DFT) calculations. Overall, the mechanism of hydroarylation proceeds through a series of pre-equilibrium dissociative steps involving rupture of the dinuclear species or the loss of L from Ph-Ir-L to the solvento, 16-electron species, Ph-Ir(acac-O,O)_2-Sol (where Sol refers to coordinated solvent). This species then undergoes trans to cis isomerization of the acetylacetonato ligand to yield the pseudo octahedral species cis-Ph-Ir-Sol, which is followed by olefin insertion (the regioselective and rate determining step), and then activation of the C–H bond of an incoming benzene to generate the product and regenerate the catalyst
- …