1,609 research outputs found
Performance Evaluation of Vision-Based Algorithms for MAVs
An important focus of current research in the field of Micro Aerial Vehicles
(MAVs) is to increase the safety of their operation in general unstructured
environments. Especially indoors, where GPS cannot be used for localization,
reliable algorithms for localization and mapping of the environment are
necessary in order to keep an MAV airborne safely. In this paper, we compare
vision-based real-time capable methods for localization and mapping and point
out their strengths and weaknesses. Additionally, we describe algorithms for
state estimation, control and navigation, which use the localization and
mapping results of our vision-based algorithms as input.Comment: Presented at OAGM Workshop, 2015 (arXiv:1505.01065
Direct observation of domain-wall configurations transformed by spin currents
Direct observations of current-induced domain-wall propagation by
spin-polarized scanning electron microscopy are reported. Current pulses move
head-to-head as well as tail-to-tail walls in sub-micrometer Fe_{20}Ni_{80}
wires in the direction of the electron flow, and a decay of the wall velocity
with the number of injected current pulses is observed. High-resolution images
of the domain walls reveal that the wall spin structure is transformed from a
vortex to a transverse configuration with subsequent pulse injections. The
change in spin structure is directly correlated with the decay of the velocity.Comment: 5 pages, 3 figure
Fluctuation-Response Relations for Multi-Time Correlations
We show that time-correlation functions of arbitrary order for any random
variable in a statistical dynamical system can be calculated as higher-order
response functions of the mean history of the variable. The response is to a
``control term'' added as a modification to the master equation for statistical
distributions. The proof of the relations is based upon a variational
characterization of the generating functional of the time-correlations. The
same fluctuation-response relations are preserved within moment-closures for
the statistical dynamical system, when these are constructed via the
variational Rayleigh-Ritz procedure. For the 2-time correlations of the
moment-variables themselves, the fluctuation-response relation is equivalent to
an ``Onsager regression hypothesis'' for the small fluctuations. For
correlations of higher-order, there is a new effect in addition to such linear
propagation of fluctuations present instantaneously: the dynamical generation
of correlations by nonlinear interaction of fluctuations. In general, we
discuss some physical and mathematical aspects of the {\it Ans\"{a}tze}
required for an accurate calculation of the time correlations. We also comment
briefly upon the computational use of these relations, which is well-suited for
automatic differentiation tools. An example will be given of a simple closure
for turbulent energy decay, which illustrates the numerical application of the
relations.Comment: 28 pages, 1 figure, submitted to Phys. Rev.
Robust nanopatterning by laser-induced dewetting of metal nanofilms
We have observed nanopattern formation with robust and controllable spatial
ordering by laser-induced dewetting in nanoscopic metal films. Pattern
evolution in Co film of thickness 1\leq h\leq8 nm on SiO_{2} was achieved under
multiple pulse irradiation using a 9 ns pulse laser. Dewetting leads to the
formation of cellular patterns which evolve into polygons that eventually break
up into nanoparticles with monomodal size distribution and short range ordering
in nearest-neighbour spacing R. Spatial ordering was attributed to a
hydrodynamic thin film instability and resulted in a predictable variation of R
and particle diameter D with h. The length scales R and D were found to be
independent of the laser energy. These results suggest that spatially ordered
metal nanoparticles can be robustly assembled by laser-induced dewetting
Geometric approach to Fletcher's ideal penalty function
Original article can be found at: www.springerlink.com Copyright Springer. [Originally produced as UH Technical Report 280, 1993]In this note, we derive a geometric formulation of an ideal penalty function for equality constrained problems. This differentiable penalty function requires no parameter estimation or adjustment, has numerical conditioning similar to that of the target function from which it is constructed, and also has the desirable property that the strict second-order constrained minima of the target function are precisely those strict second-order unconstrained minima of the penalty function which satisfy the constraints. Such a penalty function can be used to establish termination properties for algorithms which avoid ill-conditioned steps. Numerical values for the penalty function and its derivatives can be calculated efficiently using automatic differentiation techniques.Peer reviewe
Efficient Merger of Binary Supermassive Black Holes in Non-Axisymmetric Galaxies
Binary supermassive black holes form naturally in galaxy mergers, but their
long-term evolution is uncertain. In spherical galaxies, N-body simulations
show that binary evolution stalls at separations much too large for significant
emission of gravitational waves (the "final parsec problem"). Here, we follow
the long-term evolution of a massive binary in more realistic, triaxial and
rotating galaxy models. We find that the binary does not stall. The binary
hardening rates that we observe are sufficient to allow complete coalescence of
binary SBHs in 10 Gyr or less, even in the absence of collisional loss-cone
refilling or gas-dynamical torques, thus providing a potential solution to the
final parsec problem.Comment: 5 pages, 3 figure
A recombinant herpesviral vector containing a near-full-length SIVmac239 genome produces SIV particles and elicits immune responses to all nine SIV gene products
The properties of the human immunodeficiency virus (HIV) pose serious difficulties for the development of an effective prophylactic vaccine. Here we describe the construction and characterization of recombinant (r), replication-competent forms of rhesus monkey rhadinovirus (RRV), a gamma-2 herpesvirus, containing a near-full-length (nfl) genome of the simian immunodeficiency virus (SIV). A 306-nucleotide deletion in the pol gene rendered this nfl genome replication-incompetent as a consequence of deletion of the active site of the essential reverse transcriptase enzyme. Three variations were constructed to drive expression of the SIV proteins: one with SIV\u27s own promoter region, one with a cytomegalovirus (cmv) immediate-early promoter/enhancer region, and one with an RRV dual promoter (p26 plus PAN). Following infection of rhesus fibroblasts in culture with these rRRV vectors, synthesis of the early protein Nef and the late structural proteins Gag and Env could be demonstrated. Expression levels of the SIV proteins were highest with the rRRV-SIVcmv-nfl construct. Electron microscopic examination of rhesus fibroblasts infected with rRRV-SIVcmv-nfl revealed numerous budding and mature SIV particles and these infected cells released impressive levels of p27 Gag protein ( \u3e 150 ng/ml) into the cell-free supernatant. The released SIV particles were shown to be incompetent for replication. Monkeys inoculated with rRRV-SIVcmv-nfl became persistently infected, made readily-detectable antibodies against SIV, and developed T-cell responses against all nine SIV gene products. Thus, rRRV expressing a near-full-length SIV genome mimics live-attenuated strains of SIV in several important respects: the infection is persistent; \u3e 95% of the SIV proteome is naturally expressed; SIV particles are formed; and CD8+ T-cell responses are maintained indefinitely in an effector-differentiated state. Although the magnitude of anti-SIV immune responses in monkeys infected with rRRV-SIVcmv-nfl falls short of what is seen with live-attenuated SIV infection, further experimentation seems warranted
- …