60 research outputs found

    Chimeric Activators and Repressors Define HY5 Activity

    Get PDF

    Bypassing reproductive barriers by chemical epimutagenesis

    Full text link

    In vivo interaction between atToc33 and atToc159 GTP-binding domains demonstrated in a plant split-ubiquitin system

    Get PDF
    The GTPases atToc33 and atToc159 are pre-protein receptor components of the translocon complex at the outer chloroplast membrane in Arabidopsis. Despite their participation in the same complex in vivo, evidence for their interaction is still lacking. Here, a split-ubiquitin system is engineered for use in plants, and the in vivo interaction of the Toc GTPases in Arabidopsis and tobacco protoplasts is shown. Using the same method, the self-interaction of the peroxisomal membrane protein atPex11e is demonstrated. The finding suggests a more general suitability of the split-ubiquitin system as a plant in vivo interaction assa

    DDT-RELATED PROTEIN4-IMITATION SWITCH alters nucleosome distribution to relieve transcriptional silencing in Arabidopsis

    Full text link
    DNA methylation is a conserved epigenetic modification that is typically associated with silencing of transposable elements and promoter methylated genes. However, some DNA-methylated loci are protected from silencing, allowing transcriptional flexibility in response to environmental and developmental cues. Through a genetic screen in Arabidopsis (Arabidopsis thaliana), we uncovered an antagonistic relationship between the MICRORCHIDIA (MORC) protein and the IMITATION SWITCH (ISWI) complex in regulating the DNA-methylated SUPPRESSOR OF DRM1 DRM2 CMT3 (SDC) reporter. We demonstrate that components of the plant-specific ISWI complex, including CHROMATIN REMODELING PROTEIN11 (CHR11), CHR17, DDT-RELATED PROTEIN4 (DDR4), and DDR5, function to partially de-repress silenced genes and transposable elements (TEs), through their function in regulating nucleosome distribution. This action also requires the known transcriptional activator DNAJ proteins, providing a mechanistic link between nucleosome remodeling and transcriptional activation. Genome-wide studies revealed that DDR4 causes changes in nucleosome distribution at numerous loci, a subset of which is associated with changes in DNA methylation and/or transcription. Our work reveals a mechanism for balancing transcriptional flexibility and faithful silencing of DNA-methylated loci. As both ISWI and MORC family genes are widely distributed across plant and animal species, our findings may represent a conserved eukaryotic mechanism for fine-tuning gene expression under epigenetic regulation

    MTHFD1 controls DNA methylation in Arabidopsis.

    Get PDF
    DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases

    The MOM1 complex recruits the RdDM machinery via MORC6 to establish de novo DNA methylation

    Full text link
    MORPHEUS' MOLECULE1 (MOM1) is an Arabidopsis factor previously shown to mediate transcriptional silencing independent of major DNA methylation changes. Here we find that MOM1 localizes with sites of RNA-directed DNA methylation (RdDM). Tethering MOM1 with an artificial zinc finger to an unmethylated FWA promoter leads to establishment of DNA methylation and FWA silencing. This process is blocked by mutations in components of the Pol V arm of the RdDM machinery, as well as by mutation of MICRORCHIDIA 6 (MORC6). We find that at some endogenous RdDM sites, MOM1 is required to maintain DNA methylation and a closed chromatin state. In addition, efficient silencing of newly introduced FWA transgenes is impaired in the mom1 mutant. In addition to RdDM sites, we identify a group of MOM1 peaks at active chromatin near genes that colocalized with MORC6. These findings demonstrate a multifaceted role of MOM1 in genome regulation
    • …
    corecore