17 research outputs found

    In vitro biotransformation assays using fish liver cells: Comparing rainbow trout and carp hepatocytes.

    Get PDF
    Biotransformation assays using primary hepatocytes from rainbow trout, Oncorhynchus mykiss, were validated as a reliable in vitro tool to predict in vivo bioconcentration factors (BCF) of chemicals in fish. Given the pronounced interspecies differences of chemical biotransformation, the present study aimed to compare biotransformation rate values and BCF predictions obtained with hepatocytes from the cold-water species, rainbow trout, to data obtained with hepatocytes of the warm-water species, common carp (Cyprinus carpio). In a first step, we adapted the protocol for the trout hepatocyte assay, including the cryopreservation method, to carp hepatocytes. The successful adaptation serves as proof of principle that the in vitro hepatocyte biotransformation assays can be technically transferred across fish species. In a second step, we compared the in vitro intrinsic clearance rates (CLin vitro, int) of two model xenobiotics, benzo[a]pyrene (BaP) and methoxychlor (MXC), in trout and carp hepatocytes. The in vitro data were used to predict in vivo biotransformation rate constants (kB) and BCFs, which were then compared to measured in vivo kB and BCF values. The CLin vitro, int values of BaP and MXC did not differ significantly between trout and carp hepatocytes, but the predicted BCF values were significantly higher in trout than in carp. In contrast, the measured in vivo BCF values did not differ significantly between the two species. A possible explanation of this discrepancy is that the existing in vitro-in vivo prediction models are parameterized only for trout but not for carp. Therefore, future research needs to develop species-specific extrapolation models

    Hepatocytes as in vitro test system to investigate metabolite patterns of pesticides in farmed rainbow trout and common carp: Comparison between in vivo and in vitro and across species.

    Get PDF
    In vitro tools using isolated primary fish hepatocytes have been proposed as a useful model to study the hepatic metabolism of xenobiotics in fish. In order to evaluate the potential of in vitro fish hepatocyte assays to provide information on in vivo metabolite patterns of pesticides in farmed fish, the present study addressed the following questions: Are in vitro and in vivo metabolite patterns comparable? Are species specific differences of metabolite patterns in vivo reflected in vitro? Are metabolite patterns obtained from cryopreserved hepatocytes comparable to those from freshly isolated cells? Rainbow trout and common carp were dosed orally with feed containing the pesticide methoxychlor (MXC) for 14days. In parallel, in vitro incubations using suspensions of freshly isolated or cryopreserved primary hepatocytes obtained from both species were performed. In vivo and in vitro samples were analyzed by thin-layer chromatography with authentic standards supported by HPLC-MS. Comparable metabolite patterns from a qualitative perspective were observed in liver in vivo and in hepatocyte suspensions in vitro. Species specific differences of MXC metabolite patterns observed between rainbow trout and common carp in vivo were well reflected by experiments with hepatocytes in vitro. Finally, cryopreserved hepatocytes produced comparable metabolite patterns to freshly isolated cells. The results of this study indicate that the in vitro hepatocyte assay could be used to identify metabolite patterns of pesticides in farmed fish and could thus serve as a valuable tool to support in vivo studies as required for pesticides approval according to the EU regulation 1107

    Comparison of Alternative Methods for Bioaccumulation Assessment: Scope and Limitations of In Vitro Depletion Assays with Rainbow Trout and Bioconcentration Tests in the Freshwater Amphipod Hyalella azteca

    No full text
    Bioaccumulation assessment predominantly relies on the bioconcentration factor (BCF) as the sole decisive metric. The test guideline 305 by the Organisation for Economic Co-operation and Development (OECD) provides the standard procedure for deriving this in vivo fish BCF, which is not only expensive and labor-intensive, but also requires many animals. Accordingly, there is a great need for and interest in alternative methods that can help to reduce, replace, and refine vertebrate tests, as described in the 3R principles. Two alternative approaches have been developed: the bioconcentration test with the freshwater amphipod Hyalella azteca and the OECD test guideline 319 which provides a method to determine experimentally derived in vitro metabolism rates that can then be incorporated into in silico prediction models for rainbow trout BCF calculation. In the present study both alternative methods were applied to 5 substances of different physicochemical characteristics. The results were compared with literature values of fish in vivo BCFs and additional BCFs obtained with the alternative methods, if available. Potential differences between the results of the test methods are discussed utilizing information such as in vivo metabolism rates. The currently available data set suggests that these 2 alternative methods pose promising alternatives to predict bioaccumulation in fish, although defined applicability domains have yet to be determined.ISSN:0277-2248ISSN:1029-0486ISSN:0092-986

    Comparison of Alternative Methods for Bioaccumulation Assessment: Scope and Limitations of In Vitro Depletion Assays with Rainbow Trout and Bioconcentration Tests in the Freshwater Amphipod Hyalella azteca

    No full text
    Bioaccumulation assessment predominantly relies on the bioconcentration factor (BCF) as the sole decisive metric. The test guideline 305 by the Organisation for Economic Co-operation and Development (OECD) provides the standard procedure for deriving this in vivo fish BCF, which is not only expensive and labor-intensive, but also requires many animals. Accordingly, there is a great need for and interest in alternative methods that can help to reduce, replace, and refine vertebrate tests, as described in the 3R principles. Two alternative approaches have been developed: the bioconcentration test with the freshwater amphipod Hyalella azteca and the OECD test guideline 319 which provides a method to determine experimentally derived in vitro metabolism rates that can then be incorporated into in silico prediction models for rainbow trout BCF calculation. In the present study both alternative methods were applied to 5 substances of different physicochemical characteristics. The results were compared with literature values of fish in vivo BCFs and additional BCFs obtained with the alternative methods, if available. Potential differences between the results of the test methods are discussed utilizing information such as in vivo metabolism rates. The currently available data set suggests that these 2 alternative methods pose promising alternatives to predict bioaccumulation in fish, although defined applicability domains have yet to be determined.ISSN:0277-2248ISSN:1029-0486ISSN:0092-986

    DataSheet1_In vitro biotransformation assays using fish liver cells: Comparing rainbow trout and carp hepatocytes.pdf

    No full text
    Biotransformation assays using primary hepatocytes from rainbow trout, Oncorhynchus mykiss, were validated as a reliable in vitro tool to predict in vivo bioconcentration factors (BCF) of chemicals in fish. Given the pronounced interspecies differences of chemical biotransformation, the present study aimed to compare biotransformation rate values and BCF predictions obtained with hepatocytes from the cold-water species, rainbow trout, to data obtained with hepatocytes of the warm-water species, common carp (Cyprinus carpio). In a first step, we adapted the protocol for the trout hepatocyte assay, including the cryopreservation method, to carp hepatocytes. The successful adaptation serves as proof of principle that the in vitro hepatocyte biotransformation assays can be technically transferred across fish species. In a second step, we compared the in vitro intrinsic clearance rates (CLin vitro, int) of two model xenobiotics, benzo[a]pyrene (BaP) and methoxychlor (MXC), in trout and carp hepatocytes. The in vitro data were used to predict in vivo biotransformation rate constants (kB) and BCFs, which were then compared to measured in vivo kB and BCF values. The CLin vitro, int values of BaP and MXC did not differ significantly between trout and carp hepatocytes, but the predicted BCF values were significantly higher in trout than in carp. In contrast, the measured in vivo BCF values did not differ significantly between the two species. A possible explanation of this discrepancy is that the existing in vitro-in vivo prediction models are parameterized only for trout but not for carp. Therefore, future research needs to develop species-specific extrapolation models.</p

    Determination of Metabolic Stability Using Cryopreserved Hepatocytes from Rainbow Trout (Oncorhynchus mykiss).

    No full text
    Trout provide a relatively easy source of hepatocytes that can be cryopreserved and used for a range of applications including toxicity testing and determination of intrinsic clearance. Standard protocols for isolating, cryopreserving, and thawing rainbow trout hepatocytes are described, along with procedures for using fresh or cryopreserved hepatocytes to assess metabolic stability of xenobiotics in fish by means of a substrate depletion approach. Variations on these methods, troubleshooting tips, and directions for use of extrapolation factors to express results in terms of in vivo intrinsic clearance are included. These protocols have been developed for rainbow trout, but can be adapted to other fish species with appropriate considerations
    corecore