660 research outputs found

    Meteoric smoke concentration in the Vostok ice core estimated from superparamagnetic relaxation and some consequences for estimates of Earth accretion rate

    Get PDF
    We measured the magnetization of glacial and interglacial ice from the Vostok core to estimate the meteoric smoke concentration in Antarctic ice. We have found that, within the uncertainty of the method, the smoke concentration in ice in Antarctica is equivalent to that previously measured in Greenland ice. The virtually identical smoke concentrations despite the different ice accumulation rates in Greenland and Antarctica suggest that wet deposition is the main deposition mechanism for such ultra-small particles. Given the typical scavenging ratios for atmospheric aerosols, this would imply that previous estimates of accretion rate based on dry deposition are likely to be appreciably overestimated

    A sediment trap experiment in the Vema Channel to evaluate the effect of horizontal particle fluxes on measured vertical fluxes

    Get PDF
    Sediment traps are used to measure fluxes and collect samples for studies in biology, chemistry and geology, yet we have much to learn about factors that influence particle collection rates. Toward this end, we deployed cylindrical sediment traps on five current meter moorings across the Vema Channel to field-test the effect of different horizontal particle fluxes on the collection rate of the traps— instruments intended for the collection of vertically settling particles. The asymmetric flow of Antarctic Bottom Water through the Vema Channel created an excellent natural flume environment in which there were vertical and lateral gradients in the distribution of both horizontal velocity and particle concentration and, therefore, the resulting horizontal flux. Horizontal effects were examined by comparing quantities of collected material (apparent vertical fluxes) with the horizontal fluxes of particles past each trap. We also looked for evidence of hydrodynamic biases by comparing and contrasting the composition of trap material based on particle size and the concentration of Al, Si, Ca, Mg, Mn, Corg and CaCO3. Experimental inverted traps and traps with only side openings were deployed to test a hypothesis of how particles are collected in traps. The vertical flux of surface-water particles should have been relatively uniform over the 45 km region of the mooring locations, so if horizontal transport contributed significantly to collection rates in traps, the calculated trap fluxes should be correlated positively with the horizontal flux. If the horizontal flow caused undertrapping, there should be a negative correlation with velocity or Reynolds number. The gross horizontal flux past different traps varied by a factor of 37, yet the quantity collected by the traps differed by only a factor of 1.4. The calculated horizontal fluxes were 2–4 orders of magnitude larger than the measured apparent vertical fluxes. Mean velocities past the traps ranged from 1–22 cm s−1 (Reynolds numbers of 3,500–43,000 for these traps with a diameter of 30.5 cm and an aspect ratio of ≈3) and showed no statistically significant relationship to the apparent vertical flux. We conclude that at current speeds measured in a very large portion of the world\u27s oceans, vertical fluxes measured with moored, cylindrical traps should exhibit little effect from horizontal currents

    On the transport and modification of Antarctic Bottom Water in the Vema Channel

    Get PDF
    The Verna Channel is a deep passage across the Rio Grande Rise in the South Atlantic through which Antarctic Bottom Water (AABW) must flow on its way northward from the Argentine Basin to the Brazil Basin and eventuafly into the North Atlantic…

    Nephelometer and current observations at the STIE site, Panama Basin

    Get PDF
    The LDGO-Thorndike film recording nephelometer was used in three modes (profiling, short-term tethered and long-term moored) to measure changes in particle concentrations on time scales of minutes to weeks and space scales of meters to 25 km while measurements were being made on production and settling rates of particles. Although the nepheloid layer had no large near-bottom increase suggestive of local resuspension, there was an unusually thick nepheloid layer due to resuspension and advection of sediment from the basin walls. The concentration of particles increased by a factor of 3 between 900 m and the seafloor at 3840 m, while the vertical flux of particles measured in traps increased by only a factor of 1.7 over that distance. The horizontal flux of particles past traps at all depths is estimated to have varied by less than 20% and, therefore, does not appear to influence the flux measured with sediment traps. Changes with time in small-particle concentrations measured by the moored nephelometer were less than 30%, but the concentration of large particles changed by 100%

    Cross-shelf exchange in the northwestern Black Sea

    Get PDF
    The transports of water, heat, and salt between the northwestern shelf and deep interior of the Black Sea are investigated using a high-resolution three-dimensional primitive equation model. From April to August 2005, both onshore and offshore cross-shelf break transports in the top 20 m were 0.24 Sv on average, which is equivalent to the replacement of 60% of the volume of surface shelf waters (0–20 m) per month. Two main exchange mechanisms are studied: Ekman transport, and transport by mesoscale eddies and associated meanders of the Rim Current. The Ekman drift causes nearly uniform onshore or offshore flow over a large section of the shelf break, but it is confined to the upper layers. In contrast, eddies and meanders penetrate deep down to the bottom, but they are restricted laterally. During the strong wind events of 15–22 April and 1–4 July, some 0.66 × 1012 and 0.44 × 1012 m3 of water were removed from the northwestern shelf, respectively. In comparison, the single long-lived Sevastopol Eddy generated a much larger offshore transfer of 2.84 × 1012 m3 over the period 23 April to 30 June, which is equivalent to 102% of the volume of northwestern shelf waters. Over the study period, salt exchanges increased the average density of the shelf waters by 0.67 kg m−3 and reduced the density contrast between the shelf and deep sea, while lateral heat exchanges reduced the density of the shelf waters by 0.16 kg m−3 and sharpened the shelf break front

    Benthic storms, nepheloid layers, and linkage with upper ocean dynamics in the western North Atlantic

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Geology 385 (2017): 304–327, doi:10.1016/j.margeo.2016.12.012.Benthic storms are episodic periods of strong abyssal currents and intense, benthic nepheloid (turbid) layer development. In order to interpret the driving forces that create and sustain these storms, we synthesize measurements of deep ocean currents, nephelometer-based particulate matter (PM) concentrations, and seafloor time-series photographs collected during several science programs that spanned two decades in the western North Atlantic. Benthic storms occurred in areas with high sea-surface eddy kinetic energy, and they most frequently occurred beneath the meandering Gulf Stream or its associated rings, which generate deep cyclones, anticyclones, and/or topographic waves; these create currents with sufficient bed-shear stress to erode and resuspend sediment, thus initiating or enhancing benthic storms. Occasionally, strong currents do not correspond with large increases in PM concentrations, suggesting that easily erodible sediment was previously swept away. Periods of moderate to low currents associated with high PM concentrations are also observed; these are interpreted as advection of PM delivered as storm tails from distal storm events. Outside of areas with high surface and deep eddy kinetic energy, benthic nepheloid layers are weak to non-existent, indicating that benthic storms are necessary to create and maintain strong nepheloid layers. Origins and intensities of benthic storms are best identified using a combination of time-series measurements of bottom currents, PM concentration, and bottom photographs, and these should be coupled with water-column and surface-circulation data to better interpret the specific relations between shallow and deep circulation patterns. Understanding the generation of benthic nepheloid layers is necessary in order to properly interpret PM distribution and its influence on global biogeochemistry.Funding for construction of the Bottom Ocean Monitor was provided by Lamont-Doherty Geological Observatory (now Lamont-Doherty Earth Observatory). BOM and mooring deployments and data analysis were funded by the Office of Naval Research (contracts N00014-75-C-0210 and N00014-80-C-0098 to Biscaye and Gardner at Lamont-Doherty; Contracts N00014-79-C-0071 and N00014-82-C-0019 at Woods Hole Oceanographic Institution and ONR Contracts N00014-75-C-0210 and N00014-80-C-0098 at Lamont-Doherty Geological Observatory to Tucholke), Sandia National Laboratories (contract SL-16-5279 to Gardner), the National Science Foundation (contract OCE 1536565 to Gardner and Richardson), Earl F. Cook Professorship (Gardner), and the Department of Energy (contract DE-FG02-87ER-60555 to Biscaye)
    corecore