126 research outputs found

    A Role for VEGFR2 Activation in Endothelial Responses Caused by Barrier Disruptive OxPAPC Concentrations

    Get PDF
    Introduction: Oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OxPAPC) differentially modulate endothelial cell (EC) barrier function in a dose-dependent fashion. Vascular endothelial growth factor receptor-2 (VEGFR2) is involved in the OxPAPC-induced EC inflammatory activation. This study examined a role of VEGFR2 in barrier dysfunction caused by high concentrations of OxPAPC and evaluated downstream signaling mechanisms resulting from the effect of OxPAPC in EC from pulmonary and systemic circulation

    Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells

    Get PDF
    Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes

    A Novel Role for Aquaporin-5 in Enhancing Microtubule Organization and Stability

    Get PDF
    Aquaporin-5 (AQP5) is a water-specific channel located on the apical surface of airway epithelial cells. In addition to regulating transcellular water permeability, AQP5 can regulate paracellular permeability, though the mechanisms by which this occurs have not been determined. Microtubules also regulate paracellular permeability. Here, we report that AQP5 promotes microtubule assembly and helps maintain the assembled microtubule steady state levels with slower turnover dynamics in cells. Specifically, reduced levels of AQP5 correlated with lower levels of assembled microtubules and decreased paracellular permeability. In contrast, overexpression of AQP5 increased assembly of microtubules, with evidence of increased MT stability, and promoted the formation of long straight microtubules in the apical domain of the epithelial cells. These findings indicate that AQP5-mediated regulation of microtubule dynamics modulates airway epithelial barrier properties and epithelial function

    Low-molecular-weight heparin reduces hyperoxia-augmented ventilator-induced lung injury via serine/threonine kinase-protein kinase B

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-tidal-volume mechanical ventilation and hyperoxia used in patients with acute lung injury (ALI) can induce the release of cytokines, including high-mobility group box-1 (HMGB1), oxygen radicals, neutrophil infiltration, and the disruption of epithelial and endothelial barriers. Hyperoxia has been shown to increase ventilator-induced lung injury, but the mechanisms regulating interaction between high tidal volume and hyperoxia are unclear. We hypothesized that subcutaneous injections of enoxaparin would decrease the effects of hyperoxia on high-tidal-volume ventilation-induced HMGB1 production and neutrophil infiltration via the serine/threonine kinase/protein kinase B (Akt) pathway.</p> <p>Methods</p> <p>Male C57BL/6, either wild type or Akt<sup>+/-</sup>, aged between 6 and 8 weeks, weighing between 20 and 25 g, were exposed to high-tidal-volume (30 ml/kg) mechanical ventilation with room air or hyperoxia for 2 to 8 hours with or without 4 mg/kg enoxaparin administration. Nonventilated mice served as a control group. Evan blue dye, lung wet-to-dry weight ratio, free radicals, myeloperoxidase, Western blot of Akt, and gene expression of HMGB1 were measured. The expression of HMGB1 was studied by immunohistochemistry.</p> <p>Results</p> <p>High-tidal-volume ventilation using hyperoxia induced microvascular permeability, Akt activation, HMGB1 mRNA expression, neutrophil infiltration, oxygen radicals, HMGB1 production, and positive staining of Akt in bronchial epithelium. Hyperoxia-induced augmentation of ventilator-induced lung injury was attenuated with Akt deficient mice and pharmacological inhibition of Akt activity by enoxaparin.</p> <p>Conclusion</p> <p>These data suggest that enoxaparin attenuates hyperoxia-augmented high-tidal-volume ventilation-induced neutrophil influx and HMGB1 production through inhibition of the Akt pathway. Understanding the protective mechanism of enoxaparin related with the reduction of HMGB1 may help further knowledge of the effects of mechanical forces in the lung and development of possible therapeutic strategies involved in acute lung injury.</p

    Dynamic Regulation of Myosin Light Chain Phosphorylation by Rho-kinase

    Get PDF
    Myosin light chain (MLC) phosphorylation plays important roles in various cellular functions such as cellular morphogenesis, motility, and smooth muscle contraction. MLC phosphorylation is determined by the balance between activities of Rho-associated kinase (Rho-kinase) and myosin phosphatase. An impaired balance between Rho-kinase and myosin phosphatase activities induces the abnormal sustained phosphorylation of MLC, which contributes to the pathogenesis of certain vascular diseases, such as vasospasm and hypertension. However, the dynamic principle of the system underlying the regulation of MLC phosphorylation remains to be clarified. Here, to elucidate this dynamic principle whereby Rho-kinase regulates MLC phosphorylation, we developed a mathematical model based on the behavior of thrombin-dependent MLC phosphorylation, which is regulated by the Rho-kinase signaling network. Through analyzing our mathematical model, we predict that MLC phosphorylation and myosin phosphatase activity exhibit bistability, and that a novel signaling pathway leading to the auto-activation of myosin phosphatase is required for the regulatory system of MLC phosphorylation. In addition, on the basis of experimental data, we propose that the auto-activation pathway of myosin phosphatase occurs in vivo. These results indicate that bistability of myosin phosphatase activity is responsible for the bistability of MLC phosphorylation, and the sustained phosphorylation of MLC is attributed to this feature of bistability

    Microtubule Dynamics Regulate Cyclic Stretch-Induced Cell Alignment in Human Airway Smooth Muscle Cells

    Get PDF
    Microtubules are structural components of the cytoskeleton that determine cell shape, polarity, and motility in cooperation with the actin filaments. In order to determine the role of microtubules in cell alignment, human airway smooth muscle cells were exposed to cyclic uniaxial stretch. Human airway smooth muscle cells, cultured on type I collagen-coated elastic silicone membranes, were stretched uniaxially (20% in strain, 30 cycles/min) for 2 h. The population of airway smooth muscle cells which were originally oriented randomly aligned near perpendicular to the stretch axis in a time-dependent manner. However, when the cells treated with microtubule disruptors, nocodazole and colchicine, were subjected to the same cyclic uniaxial stretch, the cells failed to align. Lack of alignment was also observed for airway smooth muscle cells treated with a microtubule stabilizer, paclitaxel. To understand the intracellular mechanisms involved, we developed a computational model in which microtubule polymerization and attachment to focal adhesions were regulated by the preexisting tensile stress, pre-stress, on actin stress fibers. We demonstrate that microtubules play a central role in cell re-orientation when cells experience cyclic uniaxial stretching. Our findings further suggest that cell alignment and cytoskeletal reorganization in response to cyclic stretch results from the ability of the microtubule-stress fiber assembly to maintain a homeostatic strain on the stress fiber at focal adhesions. The mechanism of stretch-induced alignment we uncovered is likely involved in various airway functions as well as in the pathophysiology of airway remodeling in asthma

    Regulation of endothelial cell plasticity by TGF-Ξ²

    Get PDF
    Recent evidence has demonstrated that endothelial cells can have a remarkable plasticity. By a process called Endothelial-to-Mesenchymal Transition (EndMT) endothelial cells convert to a more mesenchymal cell type that can give rise to cells such as fibroblasts, but also bone cells. EndMT is essential during embryonic development and tissue regeneration. Interestingly, it also plays a role in pathological conditions like fibrosis of organs such as the heart and kidney. In addition, EndMT contributes to the generation of cancer associated fibroblasts that are known to influence the tumor-microenvironment favorable for the tumor cells. EndMT is a form of the more widely known and studied Epithelial-to-Mesenchymal Transition (EMT). Like EMT, EndMT can be induced by transforming growth factor (TGF)-Ξ². Indeed many studies have pointed to the important role of TGF-Ξ² receptor/Smad signaling and downstream targets, such as Snail transcriptional repressor in EndMT. By selective targeting of TGF-Ξ² receptor signaling pathological EndMT may be inhibited for the therapeutic benefit of patients with cancer and fibrosis
    • …
    corecore