3 research outputs found

    Effect of eccentric exercise on patients with chronic exertional compartment syndrome

    No full text
    There are a number of similarities between chronic exertional compartment syndrome (CECS) and the effects of high force eccentric contractions in healthy controls. We hypothesised that CECS patients would be particularly susceptible to pain, fatigue and swelling after eccentric exercise. Ten CECS patients [aged 30.3 (8.0) years, mean (SD)], 7 males) and 14 healthy controls [aged 32.3 (9.0) years, 7 males] performed 40 maximal eccentric contractions of the anterior tibial muscles at an angular velocity of 90(o) s(-1). Maximal voluntary isometric contractions (MVC), force generated by electrical stimulation at 10 Hz and 50 Hz and muscle thickness (measured by real-time ultrasound scanning) were measured before exercise and for 10 min afterwards. Ratings of pain and tenderness were made before exercise, then 24 h and 48 h later. The two groups were comparable for initial isometric strength and muscle size. MVC force immediately after exercise fell to 90 (2.5)% [mean (SEM)] in patients and 86.5 (2.4)% in controls (P<0.0005 for both groups) and had not recovered after 10 min. Preferential loss of force at the low stimulation frequency occurred in both groups to a similar extent (20%, P<0.0005) and continued to decline over 10 min of recovery. There was no significant change in muscle thickness in either group. Only mild pain and tenderness were reported by the controls. The patients showed great individual variation but their mean pain scores were significantly higher during dorsiflexion and palpation (P<0.05) 24 h after exercise. After 48 h the patients reported more pain during dorsiflexion (P=0.005), plantarflexion (P<0.05) and palpation (P<0.05). These results suggest that some, but not all, CECS patients may be more susceptible to the pain associated with eccentric contractions that is thought to be the cause of damage and inflammation of connective tissue

    Venous obstruction in healthy limbs: a model for chronic compartment syndrome?

    No full text
    PURPOSE: Chronic exertional compartment syndrome (CECS) in the anterior tibial (AT) compartment is generally believed to be the result of reduced venous blood flow caused by restrictive compartments and increased intramuscular pressures. If this is so, then restricting venous flow in the muscles of healthy subjects during exercise should mimic CECS. METHODS: This hypothesis was tested in 10 control subjects (aged 19-41 yr, five males) with and without external venous occlusion induced by a sphygmomanometer cuff fitted just below the knee and inflated to 80 mm Hg. Twenty CECS patients (20-39 yr, 16 males) were studied without external occlusion. Subjects performed intermittent, isometric maximal voluntary contractions (MVC) of the AT for 20 min (1.6-s contractions, 0.5 duty cycle). MVC, tetanic force (2 s at 50 Hz), muscle thickness (ultrasound imaging), and pain were measured during exercise and 10 min of recovery. RESULTS: Venous occlusion in the controls induced greater pain, fatigue, and increase in muscle thickness (P < 0.01). Initially the patients fatigued more slowly than the occluded controls, but at the end of exercise, the fatigue and pain were similar in these two groups. The controls showed a greater increase in muscle size (P = 0.01). Recovery was similar in all three groups, although the size of the patients' muscles recovered rather more slowly. CONCLUSION: External venous occlusion of the AT muscles in control subjects induces changes very similar to those of CECS patients, although the different time courses indicate that different processes are involved. The AT compartment of CECS patients is capable of distension
    corecore