147 research outputs found

    The \rho\rho interaction in the hidden gauge formalism and the f_0(1370) and f_2(1270) resonances

    Full text link
    We have studied the interaction of vectors mesons within the hidden gauge formalism and applied it to the particular case of the ρρ\rho \rho interaction. We find a strong attraction in the isospin, spin channels I,S=0,0 and 0,2, which is enough to bind the ρρ\rho \rho system. We also find that the attraction in the I,S=0,2 channel is much stronger than in the 0,0 case. The states develop a width when the ρ\rho mass distribution is considered, and particularly when the ππ\pi \pi decay channel is turned on. Using a regularization scheme with cut offs of natural size, we obtain results in fair agreement with the mass and the width of the f0(1370)f_0(1370) and f2(1270)f_2(1270) meson states, providing a natural explanation of why the tensor state is more bound than the scalar and offering a new picture for these states, which would be dynamically generated from the ρρ\rho \rho interaction or, in simpler words, ρρ\rho \rho molecular states.Comment: Version accepted for publicatio

    Generalized vector form factors of the pion in a chiral quark model

    Full text link
    Generalized vector form factors of the pion, related to the moments of the generalized parton distribution functions, are evaluated in the Nambu--Jona-Lasinio model with the Pauli-Villars regularization. The lowest moments (the electromagnetic and the gravitational form factors) are compared to recent lattice data, with fair agreement. Predictions for higher-order moments are also made. Relevant features of the generalized form factors in the chiral quark models are highlighted and the role of the QCD evolution for the higher-order GFFs is stressed.Comment: Dedicated to the memory of Manoj K. Banerjee, to appear in a special issue of the Indian Journal of Physics, 6 pages, 4 figure

    Scheming in Dimensional Regularization

    Get PDF
    We consider the most general loop integral that appears in non-relativistic effective field theories with no light particles. The divergences of this integral are in correspondence with simple poles in the space of complex space-time dimensions. Integrals related to the original integral by subtraction of one or more poles in dimensions other than D=4 lead to nonminimal subtraction schemes. Subtraction of all poles in correspondence with ultraviolet divergences of the loop integral leads naturally to a regularization scheme which is precisely equivalent to cutoff regularization. We therefore recover cutoff regularization from dimensional regularization with a nonminimal subtraction scheme. We then discuss the power-counting for non-relativistic effective field theories which arises in these alternative schemes.Comment: 12 pages, additional text in opening section, version to be published in J. Phys.

    Modified Quark-Meson Coupling Model for Nuclear Matter

    Get PDF
    The quark-meson coupling model for nuclear matter, which describes nuclear matter as non-overlapping MIT bags bound by the self-consistent exchange of scalar and vector mesons, is modified by introducing medium modification of the bag constant. We model the density dependence of the bag constant in two different ways: one invokes a direct coupling of the bag constant to the scalar meson field, and the other relates the bag constant to the in-medium nucleon mass. Both models feature a decreasing bag constant with increasing density. We find that when the bag constant is significantly reduced in nuclear medium with respect to its free-space value, large canceling isoscalar Lorentz scalar and vector potentials for the nucleon in nuclear matter emerge naturally. Such potentials are comparable to those suggested by relativistic nuclear phenomenology and finite-density QCD sum rules. This suggests that the reduction of bag constant in nuclear medium may play an important role in low- and medium-energy nuclear physics.Comment: Part of the text is reordered, revised version to appear in Phys. Rev. C. 19 pages, ReVTeX, 4 figures embedde

    Linear sigma model and chiral symmetry at finite temperature

    Get PDF
    The chiral phase transition is investigated within the framework of the linear sigma model at finite temperature. We concentrate on the meson sector of the model and calculate the finite temperature effective potential in the Hartree approximation by using the Cornwall-Jackiw-Tomboulis formalism of composite operators. The effective potential is calculated for N=4 involving the usual sigma and three pions and in the large N approximation involving N-1 pion fields. In the N=4 case we have examined the theory both in the chiral limit and with the presence of a symmetry breaking term which generates the pion masses. In both cases we have solved the system of the resulting gap equations for the thermal effective masses of the particles numerically and we have investigated the evolution of the effective potential. In the N=4 case there is indication of a first order phase transition and the Goldstone theorem is not satisfied. The situation is different in the general case using the large NN approximation, the Goldstone theorem is satisfied and the phase transition is of the second order. For this analysis we have ignored quantum effects and we used the imaginary time formalism for calculations.Comment: 14 pages, 5 eps figures, RevTex, axodraw.st

    A chiral bag model approach to delta electroproduction

    Get PDF
    Helicity amplitudes for the γNΔ\gamma^* N \to \Delta transition are calculated using the cloudy bag model. A correction for center-of-mass motion is carried out using a modified Peierls-Thouless projection method. This reduces the magnitude of the transition amplitudes at small momentum transfer and enhances them at modest momentum transfers. Our calculation shows that the pion cloud contributes substantially to the transition helicity amplitudes, with the final result giving reasonable agreement with the corresponding experimental values.Comment: 16 pages, 6 ps figures, revte

    The Three-Boson System at Next-To-Next-To-Leading Order

    Full text link
    We discuss effective field theory treatments of the problem of three particles interacting via short-range forces (range R >> a_2, with a_2 the two-body scattering length). We show that forming a once-subtracted scattering equation yields a scattering amplitude whose low-momentum part is renormalization-group invariant up to corrections of O(R^3/a_2^3). Since corrections of O(R/a_2) and O(R^2/a_2^2) can be straightforwardly included in the integral equation's kernel, a unique solution for 1+2 scattering phase shifts and three-body bound-state energies can be obtained up to this accuracy. We use our equation to calculate the correlation between the binding energies of Helium-4 trimers and the atom-dimer scattering length. Our results are in excellent agreement with the recent three-dimensional Faddeev calculations of Roudnev and collaborators that used phenomenological inter-atomic potentials.Comment: 20 pages, 3 eps figure

    Novel Methods for Determining Effective Interactions for the Nuclear Shell Model

    Full text link
    The Contractor Renormalization (CORE) method is applied in combination with modern effective-theory techniques to the nuclear many-body problem. A one-dimensional--yet ``realistic''--nucleon-nucleon potential is introduced to test these novel ideas. It is found that the magnitude of ``model-space'' (CORE) corrections diminishes considerably when an effective potential that eliminates the hard-momentum components of the potential is first introduced. As a result, accurate predictions for the ground-state energy of the there-body system are made with relatively little computational effort when both techniques are used in a complementary fashion.Comment: 14 pages, 5 figures and 2 tabl

    A Light Front Treatment of the Nucleus-Implications for Deep Inelastic Scattering

    Full text link
    A light front treatment of the nuclear wave function is developed and applied, using the mean field approximation, to infinite nuclear matter. The nuclear mesons are shown to carry about a third of the nuclear plus momentum, p+; but their momentum distribution has support only at p+ =0, and the mesons do not contribute to nuclear deep inelastic scattering. This zero mode effect occurs because the meson fields are independent of space-time position.Comment: 11 pages, revtex, 1 figur
    corecore