1,224 research outputs found

    Soliton Solutions to the Einstein Equations in Five Dimensions

    Full text link
    We present a new class of solutions in odd dimensions to Einstein's equations containing either a positive or negative cosmological constant. These solutions resemble the even-dimensional Eguchi-Hanson--(anti)-de Sitter ((A)dS) metrics, with the added feature of having Lorentzian signatures. They provide an affirmative answer to the open question as to whether or not there exist solutions with negative cosmological constant that asymptotically approach AdS5/Γ_{5}/\Gamma, but have less energy than AdS5/Γ_{5}/\Gamma. We present evidence that these solutions are the lowest-energy states within their asymptotic class.Comment: 9 pages, Latex; Final version that appeared in Phys. Rev. Lett; title changed by journal from original title "Eguchi-Hanson Solitons

    Casimir force for cosmological domain walls

    Full text link
    We calculate the vacuum fluctuations that may affect the evolution of cosmological domain walls. Considering domain walls, which are classically stable and have interaction with a scalar field, we show that explicit symmetry violation in the interaction may cause quantum bias that can solve the cosmological domain wall problem.Comment: 15 pages, 2figure

    Detecting many-body entanglements in noninteracting ultracold atomic fermi gases

    Full text link
    We explore the possibility of detecting many-body entanglement using time-of-flight (TOF) momentum correlations in ultracold atomic fermi gases. In analogy to the vacuum correlations responsible for Bekenstein-Hawking black hole entropy, a partitioned atomic gas will exhibit particle-hole correlations responsible for entanglement entropy. The signature of these momentum correlations might be detected by a sensitive TOF type experiment.Comment: 5 pages, 5 figures, fixed axes labels on figs. 3 and 5, added reference

    Entanglement generation in atoms immersed in a thermal bath of external quantum scalar fields with a boundary

    Get PDF
    We examine the entanglement creation between two mutually independent two-level atoms immersed in a thermal bath of quantum scalar fields in the presence of a perfectly reflecting plane boundary. With the help of the master equation that describes the evolution in time of the atom subsystem obtained, in the weak-coupling limit, by tracing over environment (scalar fields) degrees of freedom, we find that the presence of the boundary may play a significant role in the entanglement creation in some circumstances and the new parameter, the distance of the atoms from the boundary, besides the bath temperature and the separation between the atoms, gives us more freedom in manipulating entanglement generation. Remarkably, the final remaining entanglement in the equilibrium state is independent of the presence of the boundary.Comment: 19 pages, 4 figures, to be published in PR

    On Unitary Evolution of a Massless Scalar Field In A Schwarzschild Background: Hawking Radiation and the Information Paradox

    Full text link
    We develop a Hamiltonian formalism which can be used to discuss the physics of a massless scalar field in a gravitational background of a Schwarzschild black hole. Using this formalism we show that the time evolution of the system is unitary and yet all known results such as the existence of Hawking radiation can be readily understood. We then point out that the Hamiltonian formalism leads to interesting observations about black hole entropy and the information paradox.Comment: 45 pages, revte

    Hadamard States and Adiabatic Vacua

    Full text link
    Reversing a slight detrimental effect of the mailer related to TeXabilityComment: 10pages, LaTeX (RevTeX-preprint style

    Casimir effect in Domain Wall formation

    Get PDF
    The Casimir forces on two parallel plates in conformally flat de Sitter background due to conformally coupled massless scalar field satisfying mixed boundary conditions on the plates is investigated. In the general case of mixed boundary conditions formulae are derived for the vacuum expectation values of the energy-momentum tensor and vacuum forces acting on boundaries. Different cosmological constants are assumed for the space between and outside of the plates to have general results applicable to the case of domain wall formations in the early universe.Comment: 9 pages, 2 eps figure

    Edges and Diffractive Effects in Casimir Energies

    Full text link
    The prototypical Casimir effect arises when a scalar field is confined between parallel Dirichlet boundaries. We study corrections to this when the boundaries themselves have apertures and edges. We consider several geometries: a single plate with a slit in it, perpendicular plates separated by a gap, and two parallel plates, one of which has a long slit of large width, related to the case of one plate being semi-infinite. We develop a general formalism for studying such problems, based on the wavefunctional for the field in the gap between the plates. This formalism leads to a lower dimensional theory defined on the open regions of the plates or boundaries. The Casimir energy is then given in terms of the determinant of the nonlocal differential operator which defines the lower dimensional theory. We develop perturbative methods for computing these determinants. Our results are in good agreement with known results based on Monte Carlo simulations. The method is well suited to isolating the diffractive contributions to the Casimir energy.Comment: 32 pages, LaTeX, 9 figures. v2: additional discussion of renormalization procedure, version to appear in PRD. v3: corrected a sign error in (70

    Vanishing of Gravitational Particle Production in the Formation of Cosmic Strings

    Get PDF
    We consider the gravitationally induced particle production from the quantum vacuum which is defined by a free, massless and minimally coupled scalar field during the formation of a gauge cosmic string. Previous discussions of this topic estimate the power output per unit length along the string to be of the order of 106810^{68} ergs/sec/cm in the s-channel. We find that this production may be completely suppressed. A similar result is also expected to hold for the number of produced photons.Comment: 10 pages, Plain LaTex. Minor improvements. To appear in PR

    Hawking-like radiation does not require a trapped region

    Get PDF
    We discuss the issue of quasi-particle production by ``analogue black holes'' with particular attention to the possibility of reproducing Hawking radiation in a laboratory. By constructing simple geometric acoustic models, we obtain a somewhat unexpected result: We show that in order to obtain a stationary and Planckian emission of quasi-particles, it is not necessary to create a trapped region in the acoustic spacetime (corresponding to a supersonic regime in the fluid flow). It is sufficient to set up a dynamically changing flow asymptotically approaching a sonic regime with sufficient rapidity in laboratory time.Comment: revtex4, 4 pages, 1 figur
    • …
    corecore