2,123 research outputs found

    Designing an Adaptive Interface: Using Eye Tracking to Classify How Information Usage Changes Over Time in Partially Automated Vehicles

    Get PDF
    While partially automated vehicles can provide a range of benefits, they also bring about new Human Machine Interface (HMI) challenges around ensuring the driver remains alert and is able to take control of the vehicle when required. While humans are poor monitors of automated processes, specifically during ‘steady state’ operation, presenting the appropriate information to the driver can help. But to date, interfaces of partially automated vehicles have shown evidence of causing cognitive overload. Adaptive HMIs that automatically change the information presented (for example, based on workload, time or physiologically), have been previously proposed as a solution, but little is known about how information should adapt during steady-state driving. This study aimed to classify information usage based on driver experience to inform the design of a future adaptive HMI in partially automated vehicles. The unique feature of this study over existing literature is that each participant attended for five consecutive days; enabling a first look at how information usage changes with increasing familiarity and providing a methodological contribution to future HMI user trial study design. Seventeen participants experienced a steady-state automated driving simulation for twenty-six minutes per day in a driving simulator, replicating a regularly driven route, such as a work commute. Nine information icons, representative of future partially automated vehicle HMIs, were displayed on a tablet and eye tracking was used to record the information that the participants fixated on. The results found that information usage did change with increased exposure, with significant differences in what information participants looked at between the first and last trial days. With increasing experience, participants tended to view information as confirming technical competence rather than the future state of the vehicle. On this basis, interface design recommendations are made, particularly around the design of adaptive interfaces for future partially automated vehicles

    Entanglement creation between two causally-disconnected objects

    Full text link
    We study the full entanglement dynamics of two uniformly accelerated Unruh-DeWitt detectors with no direct interaction in between but each coupled to a common quantum field and moving back-to-back in the field vacuum. For two detectors initially prepared in a separable state our exact results show that quantum entanglement between the detectors can be created by the quantum field under some specific circumstances, though each detector never enters the other's light cone in this setup. In the weak coupling limit, this entanglement creation can occur only if the initial moment is placed early enough and the proper acceleration of the detectors is not too large or too small compared to the natural frequency of the detectors. Once entanglement is created it lasts only a finite duration, and always disappears at late times. Prior result by Reznik derived using the time-dependent perturbation theory with extended integration domain is shown to be a limiting case of our exact solutions at some specific moment. In the strong coupling and high acceleration regime, vacuum fluctuations experienced by each detector locally always dominate over the cross correlations between the detectors, so entanglement between the detectors will never be generated.Comment: 16 pages, 8 figures; added Ref.[7] and related discussion

    Vacuum fluctuations in a supersymmetric model in FRW spacetime

    Full text link
    We study a noninteracting supersymmetric model in an expanding FRW spacetime. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density. A short distance cutoff of the order of Planck length provides a scale for the vacuum energy density comparable with the observed cosmological constant. Assuming the presence of a dark energy substance in addition to the vacuum fluctuations of the field an effective equation of state is derived in a selfconsistent approach. The effective equation of state is sensitive to the choice of the cut-off but no fine tuning is needed.Comment: 19 pages, accepted for publication in Phys. Rev.

    Generalized modified gravity with the second order acceleration equation

    Full text link
    In the theories of generalized modified gravity, the acceleration equation is generally fourth order. So it is hard to analyze the evolution of the Universe. In this paper, we present a class of generalized modified gravity theories which have the acceleration equation of second order derivative. Then both the cosmic evolution and the weak-field limit of the theories are easily investigated. We find that not only the Big-bang singularity problem but also the current cosmic acceleration problem could be easily dealt with.Comment: 8 pages, 2 figures. To appear in Phys. Rev.

    Particle production and reheating in the inflationary universe

    Full text link
    Thermal field theory is applied to particle production rates in inflationary models, leading to new results for catalysed, or two-stage decay, where massive fields act as decay channels for the production of light fields. A numerical investigation of the Bolztmann equation in an expanding universe shows that the particle distributions produced during small amplitude inflaton oscillations or alongside slowly moving inflaton fields can thermalise.Comment: 16 pages, 12 figures, LaTeX, extra references in v

    Towards the solution of the relativistic gravitational radiation reaction problem for binary black holes

    Get PDF
    Here we present the results of applying the generalized Riemann zeta-function regularization method to the gravitational radiation reaction problem. We analyze in detail the headon collision of two nonspinning black holes with extreme mass ratio. The resulting reaction force on the smaller hole is repulsive. We discuss the possible extensions of these method to generic orbits and spinning black holes. The determination of corrected trajectories allows to add second perturbative corrections with the consequent increase in the accuracy of computed waveforms.Comment: Contribution to the Proceedings of the 3rd LISA Symposiu

    Classical Propagation of Strings across a Big Crunch/Big Bang Singularity

    Full text link
    One of the simplest time-dependent solutions of M theory consists of nine-dimensional Euclidean space times 1+1-dimensional compactified Milne space-time. With a further modding out by Z_2, the space-time represents two orbifold planes which collide and re-emerge, a process proposed as an explanation of the hot big bang. When the two planes are near, the light states of the theory consist of winding M2-branes, describing fundamental strings in a particular ten-dimensional background. They suffer no blue-shift as the M theory dimension collapses, and their equations of motion are regular across the transition from big crunch to big bang. In this paper, we study the classical evolution of fundamental strings across the singularity in some detail. We also develop a simple semi-classical approximation to the quantum evolution which allows one to compute the quantum production of excitations on the string and implement it in a simplified example.Comment: 38 pages, 19 figure

    Ultraviolet Divergences in Cosmological Correlations

    Full text link
    A method is developed for dealing with ultraviolet divergences in calculations of cosmological correlations, which does not depend on dimensional regularization. An extended version of the WKB approximation is used to analyze the divergences in these calculations, and these divergences are controlled by the introduction of Pauli--Villars regulator fields. This approach is illustrated in the theory of a scalar field with arbitrary self-interactions in a fixed flat-space Robertson--Walker metric with arbitrary scale factor a(t)a(t). Explicit formulas are given for the counterterms needed to cancel all dependence on the regulator properties, and an explicit prescription is given for calculating finite regulator-independent correlation functions. The possibility of infrared divergences in this theory is briefly considered.Comment: References added on various regularization methods. Improved discussion of further issues. 26 pages, 1 figur

    Matter density perturbations in modified gravity models with arbitrary coupling between matter and geometry

    Get PDF
    We consider theories with an arbitrary coupling between matter and gravity and obtain the perturbation equation of matter on subhorizon scales. Also, we derive the effective gravitational constant GeffG_{eff} and two parameters Σ\Sigma and η\eta, which along with the perturbation equation of the matter density are useful to constrain the theory from growth factor and weak lensing observations. Finally, we use a completely solvable toy model which exhibits nontrivial phenomenology to investigate specific features of the theory. We obtain the analytic solution of the modified Friedmann equation for the scale factor aa in terms of time tt and use the age of the oldest star clusters and the primordial nucleosynthesis bounds in order to constrain the parameters of our toy model.Comment: 9 pages, 3 figures, uses revtex4, added Appendix and references, minor changes, accepted in Phys. Rev. D (to appear

    Bubbles created from vacuum fluctuation

    Get PDF
    We show that the bubbles S2×S2S^2\times S^2can be created from vacuum fluctuation in certain De Sitter universe, so the space-time foam-like structure might really be constructed from bubbles of S2×S2S^2\times S^2 in the very early inflating phase of our universe. But whether such foam-like structure persisted during the later evolution of the universe is a problem unsolved now.Comment: 6 page
    • …
    corecore