69 research outputs found

    Inorganic, Organic, and Perovskite Halides with Nanotechnology for High-Light Yield X- and γ-Ray Scintillators

    Get PDF
    Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high–light yield and fast response can be found in Ce 3+ , Pr 3+ and Nd 3+ lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu 3+ doped SrI 2 . However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000–300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators

    Two-dimensional perovskite functionalized fiber-type heterostructured scintillators

    Get PDF
    A fiber-type heterostructured scintillator based on bismuth germanate (Bi4Ge3O12) functionalized with the 2D-perovskite butylammonium lead bromide ((BA)2PbBr4) has been fabricated, and its scintillation performance analyzed toward its use for fast timing applications such as time-of-flight Positron Emission Tomography. The pixel shows energy sharing between the matrix and filler component, confirming that the two components are in synergy

    Experimental Analysis on Solid Desiccant Used in An Air Conditioning

    No full text
    Garden by The Bay in Singapore is the world’s largest coolest conservatories. Although it is located in tropics and uses so many glasses, its electricity consumption is as much as a commercial building. The key to this low consumption is in air cooling technology. Air used for cooling the conservatories is dehumidified first using liquid desiccants before cooled. The same technology was implemented to a single-split air conditioner (AC) that works on a vapor-compression refrigeration cycle. The experiments were conducted in a room with opened and closed door. Instead of using a liquid desiccant, the experiment used a solid desiccant, i.e., silica gel which thickness was 6 mm and 8 mm with density equals to 1.27 gr cm–3. From the experiment, it is found that: (i) the thicker the silica gel, the higher outlet air temperature from silica gel, (ii) less condensate will be produced when the silica gel used is thicker, (iii) silica gel is suitable for reducing humidity of outdoor/fresh air, and (iv) the electricity consumption saving for inserting 8 mm silica gel is only 4 % when the door is closed and 31 % when the door is opened

    Large-area photonic bound state in the continuum for ultraviolet and deep-blue emission for organic, inorganic, and perovskite scintillators

    No full text
    Optimizing the emission properties of materials in ultraviolet and deep blue (UV-DB) is interesting in the development of new scintillator devices for the detection of X-ray, ray, and radiation particles, as those materials can be strong candidates for high light yield and fast scintillators. While their intrinsic material properties are already well studied, photonic enhancement generated through optical confinement could significantly improve their emission characteristics; however, one needs to overcome the problem of relatively low refractive indices contrast resulting in poor confinement of UV-DB light. This motivates the search for resonator structures built from readily accessible materials that can boast strong confinement in this spectral regime. Here, we present such a structure, leveraging bound states in the continuum (BICs) to realize large-area confinement of UV-DB light with ultrahigh quality factors up to Q 107. These ultrahigh Q -factors, in turn, result in strong enhancements in light emission via the Purcell effect. We demonstrate the operation of such a design by simulating the mode shape, Q -factor, and emission behavior in organic, hybrid perovskite, and III-V scintillating materials. By tailoring the structure geometry, it can be robustly tuned to match the emission characteristics of chosen materials. We start with considering ideal infinite structure supporting perfect BIC; we extend our model on finite-sized structures, and we discuss the limitations associated with the self-absorption and thickness of the structure. Our findings pave the way to cost-effective and efficient designs for scintillators in the UV-DB regime.This work was supported by the Starting Grant of Lukasiewicz Research Network-PORT Polish Center for Technology Development

    Enhancing large-area scintillator detection with photonic crystal cavities

    No full text
    Scintillators are materials that emit visible photons when bombarded by high-energy particles (X-ray, γ-ray, electrons, neutrinos, etc.) and are crucial for applications, including X-ray imaging and high-energy particle detection. Here, we show that one-dimensional (1D) photonic crystal (PhC) cavities, added externally to scintillator materials, can be used to tailor the intrinsic emission spectrum of scintillators via the Purcell effect. The emission spectral peaks can be shifted, narrowed, or split, improving the overlap between the scintillator emission spectrum and the quantum efficiency (QE) spectrum of the photodetector. As a result, the overall photodetector signal can be enhanced by over 200%. The use of external PhC cavities especially benefits thick and large-area scintillators, which are needed to stop particles with ultrahigh energy, as in large-area neutrino detectors. Our findings should pave the way to greater versatility and efficiency in the design of scintillators for applications, including X-ray imaging and positron emission tomography

    A review on MoS₂ properties, synthesis, sensing applications and challenges

    No full text
    Molybdenum disulfide (MoS₂) is one of the compounds discussed nowadays due to its outstanding properties that allowed its usage in different applications. Its band gap and its distinctive structure make it a promising material to substitute graphene and other semiconductor devices. It has different applications in electronics especially sensors like optical sensors, biosensors, electrochemical biosensors that play an important role in the detection of various diseases’ like cancer and Alzheimer. It has a wide range of energy applications in batteries, solar cells, microwave, and Terahertz applications. It is a promising material on a nanoscale level, with favorable characteristics in spintronics and magnetoresistance. In this review, we will discuss MoS₂ properties, structure and synthesis techniques with a focus on its applications and future challenges.Published versionThis research was funded by United Arab Emirates University UPAR project, grant number 31N393

    Investigating the Photovoltaic Performance in ABO<sub>3</sub> Structures via the Nonlinear Bond Model for an Arbitrary Incoming Light Polarization

    No full text
    ABO3 structures commonly known as perovskite are of high importance in advanced material science due to their interesting optical properties. Applications range from tunable band gaps, high absorption coefficients, and versatile electronic properties, making them ideal for solar cells to light-emitting diodes and even photodetectors. In this work, we present, for the first time, a nonlinear phenomenological bond model analysis of second harmonic generation (SHG) in tetragonal ABO3 with arbitrary input light polarization. We study the material symmetry and explore the strength of the nonlinear generalized third-rank tensorial elements, which can be exploited to produce a high SHG response if the incoming light polarization is correctly selected. We found that the calculated SHG intensity profile aligns well with existing experimental data. Additionally, as the incoming light polarization varies, we observed a smooth shift in the SHG intensity peak along with changes in the number of peaks. These observations confirm the results from existing rotational anisotropy SHG experiments. In addition, we show how spatial dispersion can contribute to the total SHG intensity. Our work highlights the possibility of studying relatively complex structures, such as ABO3, with minimal fitting parameters due to the power of the effective bond vector structure, enabling the introduction of an effective SHG hyperpolarizability rather than a full evaluation of the irreducible SHG tensor by group theoretical analysis. Such a simplification may well lead to a better understanding of the nonlinear properties in these classes of material and, in turn, can improve our understanding of the photovoltaic performance in ABO3 structures

    Enhancing Large-Area Scintillator Detection with Photonic Crystal Cavities

    No full text
    Scintillators are materials that emit visible photons when bombarded by high-energy particles (X-ray, γ-ray, electrons, neutrinos, etc.) and are crucial for applications, including X-ray imaging and high-energy particle detection. Here, we show that one-dimensional (1D) photonic crystal (PhC) cavities, added externally to scintillator materials, can be used to tailor the intrinsic emission spectrum of scintillators via the Purcell effect. The emission spectral peaks can be shifted, narrowed, or split, improving the overlap between the scintillator emission spectrum and the quantum efficiency (QE) spectrum of the photodetector. As a result, the overall photodetector signal can be enhanced by over 200%. The use of external PhC cavities especially benefits thick and large-area scintillators, which are needed to stop particles with ultrahigh energy, as in large-area neutrino detectors. Our findings should pave the way to greater versatility and efficiency in the design of scintillators for applications, including X-ray imaging and positron emission tomography
    corecore