13 research outputs found

    Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain

    Get PDF
    Background: Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology: In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results: In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance: These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.Bernhard T Baune, Carsten Konrad, Dominik Grotegerd, Thomas Suslow, Eva Birosova, Patricia Ohrmann, Jochen Bauer, Volker Arolt, Walter Heindel, Katharina Domschke, Sonja Schöning, Astrid V Rauch, Christina Uhlmann, Harald Kugel and Udo Dannlowsk

    Bifidobacterium Infantis 35624 Protects Against Salmonella-Induced Reductions in Digestive Enzyme Activity in Mice by Attenuation of the Host Inflammatory Response

    Get PDF
    OBJECTIVES: Salmonella-induced damage to the small intestine may decrease the villi-associated enzyme activity, causing malabsorption of nutrients and diarrhea, and thus contribute to the symptoms of infection. The objective of this study was to determine the mechanism by which different doses and durations of Salmonella infection and lipopolysaccharide (LPS) affect brush border enzyme activity in the mouse, and to determine if the probiotic Bifidobacterium longum subspecies infantis 35624 could attenuate the intestinal damage. METHODS: BALB/c mice were challenged with Salmonella enterica serovar Typhimurium UK1 at various doses (10(2)-10(8) colony-forming unit (CFU)) and durations (10(6) CFU for 1-6 days). Mice were also treated with B. longum subsp. infantis 35624 for 2 weeks before and during a 6-day S. Typhimurium challenge (10(6) CFU), or before injection of LPS. The small intestine was assessed for morphological changes, mRNA expression of cytokines, and activity of the brush border enzymes sucrase-isomaltase, maltase, and alkaline phosphatase. RESULTS: S. Typhimurium infection significantly reduced the activity of all brush border enzymes in a dose- and time-dependent manner (P<0.05). This also occurred following injection of LPS. Pre-treatment with B. longum subsp. infantis 35624 prevented weight loss, protected brush border enzyme activity, reduced the small intestinal damage, and inhibited the increase in interleukin (IL)-10 and IL-8 expression due to Salmonella challenge. CONCLUSIONS: Salmonella infection reduces the small intestinal brush border enzyme activity in mice, with the level of reduction and associated weight loss increasing with dose and duration of infection. B. longum subsp. infantis 35624 treatment attenuated the effect of Salmonella infection on brush border enzyme activity and weight loss, which may be due to modulation of the host immune response

    The Reelin (RELN) gene is associated with executive function in healthy individuals

    No full text
    Executive functions such as set-shifting and maintenance are cognitive processes that rely on complex neurodevelopmental processes. Although neurodevelopmental processes are mainly studied in animal models and in neuropsychiatric disorders, the underlying genetic basis for these processes under physiological conditions is poorly understood. We aimed to investigate the association between genetic variants of the Reelin (RELN) gene and cognitive set-shifting in healthy young individuals. The relationship between 12 selected single nucleotide polymorphisms (SNPs) of the RELN gene and cognitive set-shifting as measured by perseverative errors using the modified card sorting test (MCST) was analysed in a sample of N=98 young healthy individuals (mean age in years: 22.7 ± 0.19). Results show that in individual MANCOVA analyses two of five significant SNPs (rs2711870: F(2,39)=7.14; p=0.0019; rs2249372: F(2,39)=6.97; p=0.002) withstood Bonferroni correction for multiple testing (corrected p-value: p=0.004). While haplotype analyses of the RELN gene showed significant associations between three haplotypes and perseverative error processing in various models of inheritance (adjusted for age, gender, BDI, MWTB IQ), the GCT haplotype showed the most robust finding with a recessive model of inheritance (p=2.32 × 10(-5)) involving the functional SNP rs362691 (Leu-Val amino acid change). Although our study strongly suggests the involvement of the RELN gene in cognitive set-shifting and maintenance, our study requires further exploration as well as replication of the findings in larger samples of healthy individuals and in clinical samples with neuropsychiatric disorders.Bernhard T. Baune, Carsten Konrad, Thomas Suslow, Katharina Domschke, Eva Birosova, Christina Sehlmeyer, Christian Best

    ძეგლის მეგობარი N3 1964

    No full text
    სამეცნიერო-პოპულარული ჟურნალ

    Heritability of transforming growth factor-beta1 and tumor necrosis factor-receptor type 1 expression and vitamin D levels in healthy adolescent twins

    No full text
    Cytokines and vitamin D both have a role in modulating the immune system, and are also potentially useful biomarkers in mental illnesses such as major depressive disorder (MDD) and schizophrenia. Studying the variability of cytokines and vitamin D in a healthy population sample may add to understanding the association between these biomarkers and mental illness. To assess genetic and environmental contributions to variation in circulating levels of cytokines and vitamin D (25-hydroxy vitamin D: 25(OH)D3), we analyzed data from a healthy adolescent twin cohort (mean age 16.2 years; standard deviation 0.25). Plasma cytokine measures were available for 400 individuals (85 MZ, 115 DZ pairs), dried blood spot sample vitamin D measures were available for 378 individuals (70 MZ, 118 DZ pairs). Heritability estimates were moderate but significant for the cytokines transforming growth factor-β1 (TGF-β1), 0.57 (95% CI 0.26–0.80) and tumor necrosis factor-receptor type 1 (TNFR1), 0.50 (95% CI 0.11–0.63) respectively. Measures of 25(OH)D3 were within normal range and heritability was estimated to be high (0.86, 95% CI 0.61–0.94). Assays of other cytokines did not generate meaningful results. These potential biomarkers may be useful in mental illness, with further research warranted in larger sample sizes. They may be particularly important in adolescents with mental illness where diagnostic uncertainty poses a significant clinical challenge.Natalie T. Mills, Margie J. Wright, Anjali K. Henders, Darryl W. Eyles, Bernhard T. Baune, John J. McGrat

    Heritability of transforming growth factor-beta 1 and tumor necrosis factor-receptor type 1 expression and vitamin D Levels in healthy adolescent twins

    Get PDF
    Cytokines and vitamin D both have a role in modulating the immune system, and are also potentially useful biomarkers in mental illnesses such as major depressive disorder (MDD) and schizophrenia. Studying the variability of cytokines and vitamin D in a healthy population sample may add to understanding the association between these biomarkers and mental illness. To assess genetic and environmental contributions to variation in circulating levels of cytokines and vitamin D (25-hydroxy vitamin D: 25(OH)D3), we analyzed data from a healthy adolescent twin cohort (mean age 16.2 years; standard deviation 0.25). Plasma cytokine measures were available for 400 individuals (85 MZ, 115 DZ pairs), dried blood spot sample vitamin D measures were available for 378 individuals (70 MZ, 118 DZ pairs). Heritability estimates were moderate but significant for the cytokines transforming growth factor-beta 1 (TGF-beta 1), 0.57 (95% CI 0.26-0.80) and tumor necrosis factor-receptor type 1 (TNFR1), 0.50 (95% CI 0.11-0.63) respectively. Measures of 25(OH) D3 were within normal range and heritability was estimated to be high (0.86, 95% CI 0.61-0.94). Assays of other cytokines did not generate meaningful results. These potential biomarkers may be useful in mental illness, with further research warranted in larger sample sizes. They may be particularly important in adolescents with mental illness where diagnostic uncertainty poses a significant clinical challenge
    corecore