57 research outputs found

    Frailty and Cognitive Impairment in Predicting Mortality Among Oldest-Old People

    Get PDF
    Backgrounds: Frailty and cognitive impairment are critical geriatric syndromes. In previous studies, both conditions have been identified in old-age adults as increased risk factors for mortality. However, the combined effect of these two syndromes in predicting mortality among people with advanced age is not well understood. Thus, we used Chinese community cohort to determine the impact of the combined syndromes on the oldest-old people.Methods: Our present study is part of an ongoing project on Longevity and Aging in Dujiangyan, which is a community study on a 90+ year cohort in Sichuan Province in China. Participants were elderly people who completed baseline health assessment in 2005 followed by a collection of mortality data in 2009. Frailty and cognitive function were assessed with 34-item Rockwood Frailty Index and the Mini-Mental Status Examination, respectively, and the combined effect(s) of these two parameters on death was examined using the Cox proportional hazard regression model.Results: This study consisted of a total of 705 participants (age = 93.6 ± 3.3 years; 67.4% females), of which 53.8% died during a four-year follow-up period. The prevalence of frailty, cognitive impairment, and the overlap of these two syndromes was 63.7, 74.2, and 50.3%, respectively. Our data showed that the subjects with combined frailty and cognitive impairment were associated with increased risk of death (age, gender, education level, and other potential confounders adjusted); the hazard ratio was 2.13 (95% confidence interval 1.39, 3.24), compared with the control group. However, neither frailty alone nor cognitive impairment alone increased the risk of death in these individuals.Conclusion: The combined frailty and cognitive impairment, other than the independently measured syndromes (frailty or cognitive impairment alone), was a significant risk factor for death among the oldest-old Chinese people

    A high performance flexible recyclable supercapacitor with polyaniline by casting in unconventional proportion

    Get PDF
    Abstract(#br)A new type of recyclable flexible solid-state supercapacitor with good electrochemical performance and folder ability is produced through a facile method. Polyvinylidene fluoride - acetylene black - polyethylene glycol - polyaniline (PVDF-AB-PEG-PANI) film electrode with excellent processability and tailorability is prepared by casting strategy, which uses large amount of PVDF as film former. The new electrode has good performance with excellent flexibility (d r < 1 mm and capacity retention 97.4 % after folding 1000 times) and electrochemical performance (It can utilize the active substance efficiently that it closes to the theoretical value, with high areal capacitance of 890.44 mF cm −2 and volumetric capacitance of 89.04 F cm −3 ). A capacitance retention of 72.5 % is obtained for the supercapacitor based on this electrode after 5000 charging/discharging cycles, even polyaniline is synthesized by conventional method. The most interesting thing is that, the supercapacitor based on this electrode can easily be recycled and reused (capacity retention 97.1 % after 4 recycle times)

    Inhibiting Receptor of Advanced Glycation End Products Attenuates Pressure Overload-Induced Cardiac Dysfunction by Preventing Excessive Autophagy

    Get PDF
    The receptor for advanced glycation end products (RAGE) is involved in heart failure (HF) by mediating diverse pathologic processes, including the promotion of inflammation and autophagy. However, the role of RAGE in pressure overload-induced HF is not well understood. We found that stimulation of RAGE triggered the death of neonatal rat ventricular myocytes (NRVMs), while cell death was alleviated by ATG5 knockdown. Using transverse aortic constriction (TAC) in mice as a model of pressure overload-induced HF, we demonstrated that RAGE knockout or RAGE blockade attenuated cardiac hypertrophy and fibrosis as well as cardiac dysfunction at 8 weeks after TAC. Importantly, RAGE knockout reversed upregulation of autophagy related proteins (LC3BII/I and Beclin 1) and reduced cardiomyocyte death, indicating that excessive autophagy after TAC was inhibited. Moreover, RAGE knockout or blockade reduced the upregulation of pp65-NFκB and BNIP3, which mediate autophagy. Taken together, these results suggest that RAGE plays an important role in the progression of HF by regulating autophagy. Therefore, inhibition of the RAGE-autophagy axis could be a promising new strategy for treatment of heart failure

    Porous Lactose-Modified Chitosan Scaffold for Liver Tissue Engineering: Influence of Galactose Moieties on Cell Attachment and Mechanical Stability

    Get PDF
    Galactosylated chitosan (CTS) has been widely applied in liver tissue engineering as scaffold. However, the influence of degree of substitution (DS) of galactose moieties on cell attachment and mechanical stability is not clear. In this study, we synthesized the lactose-modified chitosan (Lact-CTS) with various DS of galactose moieties by Schiff base reaction and reducing action of NaBH4, characterized by FTIR. The DS of Lact-CTS-1, Lact-CTS-2, and Lact-CTS-3 was 19.66%, 48.62%, and 66.21% through the method of potentiometric titration. The cell attachment of hepatocytes on the CTS and Lact-CTS films was enhanced accompanied with the increase of galactose moieties on CTS chain because of the galactose ligand-receptor recognition; however, the mechanical stability of Lact-CTS-3 was reduced contributing to the extravagant hydrophilicity, which was proved using the sessile drop method. Then, the three-dimensional Lact-CTS scaffolds were fabricated by freezing-drying technique. The SEM images revealed the homogeneous pore bearing the favorable connectivity and the pore sizes of scaffolds with majority of 100 μm; however, the extract solution of Lact-CTS-3 scaffold significantly damaged red blood cells by hemolysis assay, indicating that exorbitant DS of Lact-CTS-3 decreased the mechanical stability and increased the toxicity. To sum up, the Lact-CTS-2 with 48.62% of galactose moieties could facilitate the cell attachment and possess great biocompatibility and mechanical stability, indicating that Lact-CTS-2 was a promising material for liver tissue engineering

    Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline

    Get PDF
    Background: The gut microbiome and fecal metabolites have been found to influence sarcopenia, but whether there are potential bacteria that can alleviate sarcopenia has been under-investigated, and the molecular mechanism remains unclear.Methods: To investigate the relationships between the gut microbiome, fecal metabolites and sarcopenia, subjects were selected from observational multi-ethnic study conducted in Western China. Sarcopenia was diagnosed according to the criteria of the Asian Working Group for Sarcopenia 2014. The gut microbiome was profiled by shotgun metagenomic sequencing. Untargeted metabolomic analysis was performed to analyse the differences in fecal metabolites. We investigated bacterium with the greatest relative abundance difference between healthy individuals and sarcopenia patients, and the differences in metabolites associated with the bacteria, to verify its effects on muscle mass and function in a mouse model.Results: The study included 283 participants (68.90% females, mean age: 66.66 years old) with and without sarcopenia (141 and 142 participants, respectively) and from the Han (98 participants), Zang (88 participants) and Qiang (97 participants) ethnic groups. This showed an overall reduction (15.03% vs. 20.77%, P = 0.01) of Prevotella copri between the sarcopenia and non-sarcopenia subjects across the three ethnic groups. Functional characterization of the differential bacteria showed enrichment (odds ratio = 15.97, P = 0.0068) in branched chain amino acid (BCAA) metabolism in non-sarcopenia group. A total of 13 BCAA and their derivatives have relatively low levels in sarcopenia. In the in vivo experiment, we found that the blood BCAA level was higher in the mice gavaged with live P. copri (LPC) (P &lt; 0.001). The LPC mice had significantly longer wire and grid hanging time (P &lt; 0.02), longer time on rotor (P = 0.0001) and larger grip strength (P &lt; 0.0001), indicating better muscle function. The weight of gastrocnemius mass and rectus femoris mass (P &lt; 0.05) was higher in LPC mice. The micro-computed tomography showed a larger leg area (P = 0.0031), and a small animal analyser showed a higher lean mass ratio in LPC mice (P = 0.0157), indicating higher muscle mass.Conclusions: The results indicated that there were lower levels of both P. copri and BCAA in sarcopenia individuals. In vivo experiments, gavage with LPC could attenuate muscle mass and function decline, indicating alleviating sarcopenia. This suggested that P. copri may play a therapeutic potential role in the management of sarcopenia.</p

    Heterogeneous silver-polyaniline nanocomposites with tunable morphology and controllable catalytic properties

    Get PDF
    National Natural Science Foundation of China [51173153, U1205113]; Special Program for Key Research of Chinese National Basic Research Program [2011CB612303]; Xiamen Science and Technology Committee [3502Z20121021, 3502Z20120015]This paper introduces not only a simple hydrothermal route to silver-polyaniline (Ag-PANI) nanocomposites with controllable morphology, but also a type of catalyst possessing tunable and switchable catalytic capability. Ag-PANI Janus nanoparticles (NPs) and Ag@PANI core-shell NPs have been constructed successfully at different hydrothermal temperatures. The diameter of both Ag and PANI hemispheres of Janus NPs, as well as the PANI shell thickness of core-shell NPs, was finely tuned via adjustment of the feed ratio. We also gained a deeper insight into the functionalities of PANI components in the catalytic capability of the heterogeneous catalysts, choosing catalytic reductions of nitrobenzene (NB) and 4-nitrophenol (4-NP) as model reactions. Our results showed that the catalytic capability of the nanocomposites was dependent on the PANI morphology and hydrophobicity. The PANI shell coating on Ag NPs can concentrate the lipophilic NB, thus leading to an enhanced catalytic capability of Ag@PANI core-shell NPs. However, this enhanced catalytic capability was not observed for Ag-PANI Janus NPs when catalytically reducing NB. More importantly, the catalytic capability of the core-shell NPs in the reduction of hydrophilic 4-NP is switchable by varying the PANI shell from an undoped to a doped state
    corecore