12 research outputs found

    Identification of coordinately regulated microRNA-gene networks that differ in baboons discordant for LDL-cholesterol

    Get PDF
    Rationale Plasma low-density lipoprotein cholesterol (plasma LDL-C), vascular endothelial cells and peripheral blood mononuclear cells (PBMCs), particularly monocytes, play key roles in initiating atherosclerosis, the primary cause of cardiovascular disease (CVD). Although the mechanisms underlying development of atherosclerosis are not well understood, LDL-C is known to influence expression of endothelial microRNAs (miRNAs) and gene-targets of miRNAs to promote cell senescence. However, the impact of LDL-C on expression of PBMC miRNAs and miRNA targeted genes in response to an atherogenic diet is not known. In this study, we used unbiased methods to identify coordinately responsive PBMC miRNA- gene networks that differ between low and high LDL-C baboons when fed a high-cholesterol, high-fat (HCHF) diet. Methods and results Using RNA Seq, we quantified PBMC mRNAs and miRNAs from half-sib baboons discordant for LDL-C plasma concentrations (low LDL-C, n = 3; high LDL-C, n = 3) before and after a 7-week HCHF diet challenge. For low LDL-C baboons, 626 genes exhibited significant change in expression (255 down-regulated, 371 up-regulated) in response to the HCHF diet, and for high LDL-C baboons 379 genes exhibited significant change in expression (162 down-regulated, 217 up-regulated) in response to the HCHF diet. We identified 494 miRNAs identical to human miRNAs and 47 novel miRNAs. Fifty miRNAs were differentially expressed in low LDL-C baboons (21 up- and 29 down-regulated) and 20 in high LDL-C baboons (11 up- and 9 down-regulated) in response to the HCHF diet. Among the differentially expressed miRNAs were miR-221/222 and miR-34a-3p, which were down-regulated, and miR-148a/b-5p, which was up-regulated. In addition, gene-targets of these miRNAs, VEGFA, MAML3, SPARC, and DMGDH, were inversely expressed and are central hub genes in networks and signaling pathways that differ between low and high LDL-C baboon HCHF diet response. Conclusions We have identified coordinately regulated HCHF diet-responsive PBMC miRNA-gene networks that differ between baboons discordant for LDL-C concentrations. Our findings provide potential insights into molecular mechanisms underlying initiation of atherosclerosis where LDL-C concentrations influence expression of specific miRNAs, which in turn regulate expression of genes that play roles in initiation of lesions

    Diet-induced leukocyte telomere shortening in a baboon model for early stage atherosclerosis

    Get PDF
    Reported associations between leukocyte telomere length (LTL) attrition, diet and cardiovascular disease (CVD) are inconsistent. This study explores effects of prolonged exposure to a high cholesterol high fat (HCHF) diet on LTL in a baboon model of atherosclerosis. We measured LTL by qPCR in pedigreed baboons fed a chow (n = 105) or HCHF (n = 106) diet for 2 years, tested for effects of diet on LTL, and association between CVD risk factors and atherosclerotic lesions with LTL. Though not different at baseline, after 2 years median LTL is shorter in HCHF fed baboons (P \u3c 0.0001). Diet predicts sex- and age-adjusted LTL and LTL attrition (P = 0.0009 and 0.0156, respectively). Serum concentrations of CVD biomarkers are associated with LTL at the 2-year endpoint and LTL accounts approximately 6% of the variance in aortic lesions (P = 0.04). Although heritable at baseline (h2 = 0.27, P = 0.027) and after 2 years (h2 = 0.46, P = 0.0038), baseline LTL does not predict lesion extent after 2 years. Atherogenic diet influences LTL, and LTL is a potential biomarker for early atherosclerosis. Prolonged exposure to an atherogenic diet decreases LTL and increases LTL attrition, and shortened LTL is associated with early-stage atherosclerosis in pedigreed baboons

    Hepatic transcript signatures predict atherosclerotic lesion burden prior to a 2-year high cholesterol, high fat diet challenge

    Get PDF
    The purpose of this study was to identify molecular mechanisms by which the liver influences total lesion burden in a nonhuman primate model (NHP) of cardiovascular disease with acute and chronic feeding of a high cholesterol, high fat (HCHF) diet. Baboons (47 females, 64 males) were fed a HCHF diet for 2 years (y); liver biopsies were collected at baseline, 7 weeks (w) and 2y, and lesions were quantified in aortic arch, descending aorta, and common iliac at 2y. Unbiased weighted gene co-expression network analysis (WGCNA) revealed several modules of hepatic genes correlated with lesions at different time points of dietary challenge. Pathway and network analyses were performed to study the roles of hepatic module genes. More significant pathways were observed in males than females. In males, we found modules enriched for genes in oxidative phosphorylation at baseline, opioid signaling at 7w, and EIF2 signaling and HNF1A and HNF4A networks at baseline and 2y. One module enriched for fatty acid β oxidation pathway genes was found in males and females at 2y. To our knowledge, this is the first study of a large NHP cohort to identify hepatic genes that correlate with lesion burden. Correlations of baseline and 7w module genes with lesions at 2y were observed in males but not in females. Pathway analyses of baseline and 7w module genes indicate EIF2 signaling, oxidative phosphorylation, and μ-opioid signaling are possible mechanisms that predict lesion formation induced by HCHF diet consumption in males. Our findings of coordinated hepatic transcriptional response in male baboons but not female baboons indicate underlying molecular mechanisms differ between female and male primate atherosclerosis

    Identification of Candidate Genes Regulating HDL Cholesterol Using a Chromosomal Region Expression Array

    No full text
    To identify candidate genes encoding QTLs in baboons, we have developed a novel strategy that integrates comparative mapping, bioinformatics, and expression arrays. A genome-wide scan, performed previously on pedigreed baboons to localize QTLs for phenotypes that are known risk factors for atherosclerosis, revealed a QTL on chromosome 18q that influences high-density lipoprotein cholesterol (HDL-C) phenotypes. After ruling out the only two biologically relevant positional candidate genes in this chromosomal region, we combined information from baboon pedigrees and HDL-C phenotypes with a baboon microsatellite marker map, human microsatellite marker maps, and human genome maps to develop a chromosomal region expression array (CREA). The CREA was screened with heterologous liver cDNA from sib-pairs of contrasting HDL-C phenotypes on two different diets, and genes were prioritized for further study by expression profiles. Analysis of gene expression in this restricted chromosomal region, combined with HDL-C phenotypic information, yielded a list of candidate genes for the QTL regulating HDL-C in baboons. Our data demonstrate the power of this strategy for identifying candidate genes encoding QTLs for multigenic traits. This strategy is applicable to many species that serve as models for human diseases and can even be used with human subjects

    Identification of coordinately regulated microRNA-gene networks that differ in baboons discordant for LDL-cholesterol.

    Get PDF
    RationalePlasma low-density lipoprotein cholesterol (plasma LDL-C), vascular endothelial cells and peripheral blood mononuclear cells (PBMCs), particularly monocytes, play key roles in initiating atherosclerosis, the primary cause of cardiovascular disease (CVD). Although the mechanisms underlying development of atherosclerosis are not well understood, LDL-C is known to influence expression of endothelial microRNAs (miRNAs) and gene-targets of miRNAs to promote cell senescence. However, the impact of LDL-C on expression of PBMC miRNAs and miRNA targeted genes in response to an atherogenic diet is not known. In this study, we used unbiased methods to identify coordinately responsive PBMC miRNA- gene networks that differ between low and high LDL-C baboons when fed a high-cholesterol, high-fat (HCHF) diet.Methods and resultsUsing RNA Seq, we quantified PBMC mRNAs and miRNAs from half-sib baboons discordant for LDL-C plasma concentrations (low LDL-C, n = 3; high LDL-C, n = 3) before and after a 7-week HCHF diet challenge. For low LDL-C baboons, 626 genes exhibited significant change in expression (255 down-regulated, 371 up-regulated) in response to the HCHF diet, and for high LDL-C baboons 379 genes exhibited significant change in expression (162 down-regulated, 217 up-regulated) in response to the HCHF diet. We identified 494 miRNAs identical to human miRNAs and 47 novel miRNAs. Fifty miRNAs were differentially expressed in low LDL-C baboons (21 up- and 29 down-regulated) and 20 in high LDL-C baboons (11 up- and 9 down-regulated) in response to the HCHF diet. Among the differentially expressed miRNAs were miR-221/222 and miR-34a-3p, which were down-regulated, and miR-148a/b-5p, which was up-regulated. In addition, gene-targets of these miRNAs, VEGFA, MAML3, SPARC, and DMGDH, were inversely expressed and are central hub genes in networks and signaling pathways that differ between low and high LDL-C baboon HCHF diet response.ConclusionsWe have identified coordinately regulated HCHF diet-responsive PBMC miRNA-gene networks that differ between baboons discordant for LDL-C concentrations. Our findings provide potential insights into molecular mechanisms underlying initiation of atherosclerosis where LDL-C concentrations influence expression of specific miRNAs, which in turn regulate expression of genes that play roles in initiation of lesions
    corecore