16,014 research outputs found

    Geometric Finiteness and Non-quasinormal Modes of the BTZ Black Hole

    Full text link
    The BTZ black hole is geometrically finite. This means that its three dimensional hyperbolic structure as encoded in its metric is in 1-1 correspondence with the Teichmuller space of its boundary, which is a two torus. The equivalence of different Teichmuller parameters related by the action of the modular group therefore requires the invariance of the monodromies of the solutions of the wave equation around the inner and outer horizons in the BTZ background. We show that this invariance condition leads to the non-quasinormal mode frequencies discussed by Birmingham and Carlip.Comment: 8 Pages, Latex file, minor changes in the text, journal versio

    Charged particle motions in the distended magnetospheres of Jupiter and Saturn

    Get PDF
    Charged particle motion in the guiding center approximation is analyzed for models of the Jovian and Saturnian magnetospheric magnetic fields based on Voyager magnetometer observations. Field lines are traced and exhibit the distention which arises from azimuthally circulating magnetospheric currents. The spatial dependencies of the guiding center bounce period and azimuthal drift rate are investigated for the model fields. Non-dipolar effects in the gradient-curvature drift rate are most important at the equator and affect particles with all mirror latitudes. The effect is a factor of 10-15 for Jupiter with its strong magnetodisc current and 1-2 for Saturn with its more moderate ring current. Limits of adiabaticity, where particle gyroradii become comparable with magnetic scale lengths, are discussed and are shown to occur at quite modest kinetic energies for protons and heavier ions

    The Jovian electron spectrum and synchrotron radiation at 375 cm

    Get PDF
    The synchrotron radiation expected at Earth from the region L=2.9-5 R sub J of Jupiter's magnetosphere is calculated using the Pioneer 10 electron model. The result is approximately 21 flux units (f.u.). This value is to be compared with 6.0 + or - 0.7 f.u., the flux density of synchrotron radiation measured from Jupiter's entire magnetosphere in ground-based radio observations. Most of the radiation at 375 cm is emitted by electrons in the 1 to 10 MeV range. If the electron model used for calculations is cut off below 10 MeV, the calculated flux is reduced to approximately 4 f.u., a level compatible with the radio observations

    Entropy of Three-Dimensional Black Holes in String Theory

    Get PDF
    It is observed that the three-dimensional BTZ black hole is a supersymmetric solution of the low-energy field equations of heterotic string theory compactified on an Einstein space. The solution involves a non-zero dilaton and NS-NS H-field. The entropy of the extreme black hole can then be computed using string theory and the asymptotic properties of anti-de Sitter space, without recourse to a D-brane analysis. This provides an explicit example of a black hole whose entropy can be computed using fundamental string theory, as advocated by Susskind.Comment: 7 pages, Latex, Two additional reference
    corecore