11 research outputs found

    Genetically Determined Height and Risk of Non-hodgkin Lymphoma

    Get PDF
    Although the evidence is not consistent, epidemiologic studies have suggested that taller adult height may be associated with an increased risk of some non-Hodgkin lymphoma (NHL) subtypes. Height is largely determined by genetic factors, but how these genetic factors may contribute to NHL risk is unknown. We investigated the relationship between genetic determinants of height and NHL risk using data from eight genome-wide association studies (GWAS) comprising 10,629 NHL cases, including 3,857 diffuse large B-cell lymphoma (DLBCL), 2,847 follicular lymphoma (FL), 3,100 chronic lymphocytic leukemia (CLL), and 825 marginal zone lymphoma (MZL) cases, and 9,505 controls of European ancestry. We evaluated genetically predicted height by constructing polygenic risk scores using 833 height-associated SNPs. We used logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for association between genetically determined height and the risk of four NHL subtypes in each GWAS and then used fixed-effect meta-analysis to combine subtype results across studies. We found suggestive evidence between taller genetically determined height and increased CLL risk (OR = 1.08, 95% CI = 1.00\u20131.17, p = 0.049), which was slightly stronger among women (OR = 1.15, 95% CI: 1.01\u20131.31, p = 0.036). No significant associations were observed with DLBCL, FL, or MZL. Our findings suggest that there may be some shared genetic factors between CLL and height, but other endogenous or environmental factors may underlie reported epidemiologic height associations with other subtypes

    Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia

    Get PDF
    Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) is a rare, chronic B-cell lymphoma with high heritability. We conduct a two-stage genome-wide association study of WM/LPL in 530 unrelated cases and 4362 controls of European ancestry and identify two high-risk loci associated with WM/LPL at 6p25.3 (rs116446171, near EXOC2 and IRF4; OR = 21.14, 95% CI: 14.40–31.03, P = 1.36 × 10−54) and 14q32.13 (rs117410836, near TCL1; OR = 4.90, 95% CI: 3.45–6.96, P = 8.75 × 10−19). Both risk alleles are observed at a low frequency among controls (~2–3%) and occur in excess in affected cases within families. In silico data suggest that rs116446171 may have functional importance, and in functional studies, we demonstrate increased reporter transcription and proliferation in cells transduced with the 6p25.3 risk allele. Although further studies are needed to fully elucidate underlying biological mechanisms, together these loci explain 4% of the familial risk and provide insights into genetic susceptibility to this malignancy

    Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes

    Get PDF
    Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10−8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture

    Lipid trait variants and the risk of non-hodgkin lymphoma subtypes: a mendelian randomization study

    No full text
    Background: Lipid traits have been inconsistently linked to risk of non-Hodgkin lymphoma (NHL). We examined the association of genetically predicted lipid traits with risk of diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and marginal zone lymphoma (MZL) using Mendelian randomization (MR) analysis. Methods: Genome-wide association study data from the InterLymph Consortium were available for 2,661 DLBCLs, 2,179 CLLs, 2,142 FLs, 824 MZLs, and 6,221 controls. SNPs associated (P < 5 × 10−8) with high-density lipoprotein (HDL, n = 164), low-density lipoprotein (LDL, n = 137), total cholesterol (TC, n = 161), and triglycerides (TG, n = 123) were used as instrumental variables (IV), explaining 14.6%, 27.7%, 16.8%, and 12.8% of phenotypic variation, respectively. Associations between each lipid trait and NHL subtype were calculated using the MR inverse variance–weighted method, estimating odds ratios (OR) per standard deviation and 95% confidence intervals (CI). Results: HDL was positively associated with DLBCL (OR = 1.14; 95% CI, 1.00–1.30) and MZL (OR = 1.09; 95% CI, 1.01–1.18), while TG was inversely associated with MZL risk (OR = 0.90; 95% CI, 0.83–0.99), all at nominal significance (P < 0.05). A positive trend was observed for HDL with FL risk (OR = 1.08; 95% CI, 0.99–1.19; P = 0.087). No associations were noteworthy after adjusting for multiple testing. Conclusions: We did not find evidence of a clear or strong association of these lipid traits with the most common NHL subtypes. While these IVs have been previously linked to other cancers, our findings do not support any causal associations with these NHL subtypes. Impact: Our results suggest that prior reported inverse associations of lipid traits are not likely to be causal and could represent reverse causality or confounding

    Lipid trait variants and the risk of non-hodgkin lymphoma subtypes: a mendelian randomization study

    No full text
    Background: Lipid traits have been inconsistently linked to risk of non-Hodgkin lymphoma (NHL). We examined the association of genetically predicted lipid traits with risk of diffuse large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and marginal zone lymphoma (MZL) using Mendelian randomization (MR) analysis. Methods: Genome-wide association study data from the InterLymph Consortium were available for 2,661 DLBCLs, 2,179 CLLs, 2,142 FLs, 824 MZLs, and 6,221 controls. SNPs associated (P < 5 × 10−8) with high-density lipoprotein (HDL, n = 164), low-density lipoprotein (LDL, n = 137), total cholesterol (TC, n = 161), and triglycerides (TG, n = 123) were used as instrumental variables (IV), explaining 14.6%, 27.7%, 16.8%, and 12.8% of phenotypic variation, respectively. Associations between each lipid trait and NHL subtype were calculated using the MR inverse variance–weighted method, estimating odds ratios (OR) per standard deviation and 95% confidence intervals (CI). Results: HDL was positively associated with DLBCL (OR = 1.14; 95% CI, 1.00–1.30) and MZL (OR = 1.09; 95% CI, 1.01–1.18), while TG was inversely associated with MZL risk (OR = 0.90; 95% CI, 0.83–0.99), all at nominal significance (P < 0.05). A positive trend was observed for HDL with FL risk (OR = 1.08; 95% CI, 0.99–1.19; P = 0.087). No associations were noteworthy after adjusting for multiple testing. Conclusions: We did not find evidence of a clear or strong association of these lipid traits with the most common NHL subtypes. While these IVs have been previously linked to other cancers, our findings do not support any causal associations with these NHL subtypes. Impact: Our results suggest that prior reported inverse associations of lipid traits are not likely to be causal and could represent reverse causality or confounding

    Inherited variants at 3q13.33 and 3p24.1 are associated with risk of diffuse large B-cell lymphoma and implicate immune pathways

    No full text
    We previously identified five single nucleotide polymorphisms (SNPs) at four susceptibility loci for diffuse large B-cell lymphoma (DLBCL) in individuals of European ancestry through a large genome-wide association study (GWAS). To further elucidate genetic susceptibility to DLBCL, we sought to validate two loci at 3q13.33 and 3p24.1 that were suggestive in the original GWAS with additional genotyping. In the meta-analysis (5662 cases and 9237 controls) of the four original GWAS discovery scans and three replication studies, the 3q13.33 locus (rs9831894; minor allele frequency [MAF] = 0.40) was associated with DLBCL risk [odds ratio (OR) = 0.83, P = 3.62 × 10−13]. rs9831894 is in linkage disequilibrium (LD) with additional variants that are part of a super-enhancer that physically interacts with promoters of CD86 and ILDR1. In the meta-analysis (5510 cases and 12 817 controls) of the four GWAS discovery scans and four replication studies, the 3p24.1 locus (rs6773363; MAF = 0.45) was also associated with DLBCL risk (OR = 1.20, P = 2.31 × 10−12). This SNP is 29 426-bp upstream of the nearest gene EOMES and in LD with additional SNPs that are part of a highly lineage-specific and tumor-acquired super-enhancer that shows long-range interaction with AZI2 promoter. These loci provide additional evidence for the role of immune function in the etiology of DLBCL, the most common lymphoma subtype

    Inherited variants at 3q13.33 and 3p24.1 are associated with risk of diffuse large B-cell lymphoma and implicate immune pathways

    No full text
    We previously identified five single nucleotide polymorphisms (SNPs) at four susceptibility loci for diffuse large B-cell lymphoma (DLBCL) in individuals of European ancestry through a large genome-wide association study (GWAS). To further elucidate genetic susceptibility to DLBCL, we sought to validate two loci at 3q13.33 and 3p24.1 that were suggestive in the original GWAS with additional genotyping. In the meta-analysis (5662 cases and 9237 controls) of the four original GWAS discovery scans and three replication studies, the 3q13.33 locus (rs9831894; minor allele frequency [MAF] = 0.40) was associated with DLBCL risk [odds ratio (OR) = 0.83, P = 3.62 × 10−13]. rs9831894 is in linkage disequilibrium (LD) with additional variants that are part of a super-enhancer that physically interacts with promoters of CD86 and ILDR1. In the meta-analysis (5510 cases and 12 817 controls) of the four GWAS discovery scans and four replication studies, the 3p24.1 locus (rs6773363; MAF = 0.45) was also associated with DLBCL risk (OR = 1.20, P = 2.31 × 10−12). This SNP is 29 426-bp upstream of the nearest gene EOMES and in LD with additional SNPs that are part of a highly lineage-specific and tumor-acquired super-enhancer that shows long-range interaction with AZI2 promoter. These loci provide additional evidence for the role of immune function in the etiology of DLBCL, the most common lymphoma subtype

    Common genetic polymorphisms contribute to the association between chronic lymphocytic leukaemia and non-melanoma skin cancer

    No full text
    Background: Epidemiological studies have demonstrated a positive association between chronic lymphocytic leukaemia (CLL) and non-melanoma skin cancer (NMSC). We hypothesized that shared genetic risk factors between CLL and NMSC could contribute to the association observed between these diseases. Methods: We examined the association between (i) established NMSC susceptibility loci and CLL risk in a meta-analysis including 3100 CLL cases and 7667 controls and (ii) established CLL loci and NMSC risk in a study of 4242 basal cell carcinoma (BCC) cases, 825 squamous cell carcinoma (SCC) cases and 12802 controls. Polygenic risk scores (PRS) for CLL, BCC and SCC were constructed using established loci. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Results: Higher CLL-PRS was associated with increased BCC risk (OR4th-quartile-vs-1stquartile ¼ 1.13, 95% CI: 1.02-1.24, Ptrend ¼ 0.009), even after removing the shared 6p25.3 locus. No association was observed with BCC-PRS and CLL risk (Ptrend ¼ 0.68). These findings support a contributory role for CLL in BCC risk, but not for BCC in CLL risk. Increased CLL risk was observed with higher SCC-PRS (OR4th-quartile-vs-1st-quartile ¼ 1.22, 95% CI: 1.08-1.38, Ptrend ¼ 1.36 × 10-5), which was driven by shared genetic susceptibility at the 6p25.3 locus. Conclusion: These findings highlight the role of pleiotropy regarding the pathogenesis of CLL and NMSC and shows that a single pleiotropic locus, 6p25.3, drives the observed association between genetic susceptibility to SCC and increased CLL risk. The study also provides evidence that genetic susceptibility for CLL increases BCC risk

    Genetically Determined Height and Risk of Non-hodgkin Lymphoma

    Get PDF
    Although the evidence is not consistent, epidemiologic studies have suggested that taller adult height may be associated with an increased risk of some non-Hodgkin lymphoma (NHL) subtypes. Height is largely determined by genetic factors, but how these genetic factors may contribute to NHL risk is unknown. We investigated the relationship between genetic determinants of height and NHL risk using data from eight genome-wide association studies (GWAS) comprising 10,629 NHL cases, including 3,857 diffuse large B-cell lymphoma (DLBCL), 2,847 follicular lymphoma (FL), 3,100 chronic lymphocytic leukemia (CLL), and 825 marginal zone lymphoma (MZL) cases, and 9,505 controls of European ancestry. We evaluated genetically predicted height by constructing polygenic risk scores using 833 height-associated SNPs. We used logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for association between genetically determined height and the risk of four NHL subtypes in each GWAS and then used fixed-effect meta-analysis to combine subtype results across studies. We found suggestive evidence between taller genetically determined height and increased CLL risk (OR = 1.08, 95% CI = 1.00–1.17, p = 0.049), which was slightly stronger among women (OR = 1.15, 95% CI: 1.01–1.31, p = 0.036). No significant associations were observed with DLBCL, FL, or MZL. Our findings suggest that there may be some shared genetic factors between CLL and height, but other endogenous or environmental factors may underlie reported epidemiologic height associations with other subtypes

    Common genetic polymorphisms contribute to the association between chronic lymphocytic leukaemia and non-melanoma skin cancer

    No full text
    Background: Epidemiological studies have demonstrated a positive association between chronic lymphocytic leukaemia (CLL) and non-melanoma skin cancer (NMSC). We hypothesized that shared genetic risk factors between CLL and NMSC could contribute to the association observed between these diseases. Methods: We examined the association between (i) established NMSC susceptibility loci and CLL risk in a meta-analysis including 3100 CLL cases and 7667 controls and (ii) established CLL loci and NMSC risk in a study of 4242 basal cell carcinoma (BCC) cases, 825 squamous cell carcinoma (SCC) cases and 12802 controls. Polygenic risk scores (PRS) for CLL, BCC and SCC were constructed using established loci. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Results: Higher CLL-PRS was associated with increased BCC risk (OR4th-quartile-vs-1stquartile ¼ 1.13, 95% CI: 1.02-1.24, Ptrend ¼ 0.009), even after removing the shared 6p25.3 locus. No association was observed with BCC-PRS and CLL risk (Ptrend ¼ 0.68). These findings support a contributory role for CLL in BCC risk, but not for BCC in CLL risk. Increased CLL risk was observed with higher SCC-PRS (OR4th-quartile-vs-1st-quartile ¼ 1.22, 95% CI: 1.08-1.38, Ptrend ¼ 1.36 × 10-5), which was driven by shared genetic susceptibility at the 6p25.3 locus. Conclusion: These findings highlight the role of pleiotropy regarding the pathogenesis of CLL and NMSC and shows that a single pleiotropic locus, 6p25.3, drives the observed association between genetic susceptibility to SCC and increased CLL risk. The study also provides evidence that genetic susceptibility for CLL increases BCC risk
    corecore