53 research outputs found

    Phase behaviour of Ag2CrO4 under compression: Structural, vibrational, and optical properties

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp401524sWe have performed an experimental study of the crystal structure, lattice dynamics, and optical properties of silver chromate (Ag2CrO4) at ambient temperature and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band gap have been accurately determined. When the initial orthorhombic Pnma Ag2CrO4 structure (phase I) is compressed up to 4.5 GPa, a previously undetected phase (phase II) has been observed with a 0.95% volume collapse. The structure of phase II can be indexed to a similar orthorhombic cell as phase I, and the transition can be considered to be an isostructural transition. This collapse is mainly due to the drastic contraction of the a axis (1.3%). A second phase transition to phase III occurs at 13 GPa to a structure not yet determined. First-principles calculations have been unable to reproduce the isostructural phase transition, but they propose the stabilization of a spinel-type structure at 11 GPa. This phase is not detected in experiments probably because of the presence of kinetic barriers. Experiments and calculations therefore seem to indicate that a new structural and electronic description is required to model the properties of silver chromate.This study was supported by the Spanish government MEC under grants MAT2010-21270-C04-01/03/04 and CTQ2009-14596-C02-01, by the Comunidad de Madrid and European Social Fund (S2009/PPQ1551 4161893), by the MALTA Consolider Ingenio 2010 project (CSD2007-00045), and by the Vicerrectorado de Investigacion y Desarrollo of the Universidad Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). A.M. and P.R.-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. J.A.S. acknowledges Juan de la Cierva Fellowship Program for its financial support. Diamond and ALBA Synchrotron Light Sources are acknowledged for provisions of beam time. We also thank Drs. Peral, Popescu, and Fauth for technical support.Santamaría Pérez, D.; Bandiello, E.; Errandonea, D.; Ruiz-Fuertes, J.; Gomis Hilario, O.; Sans, JÁ.; Manjón Herrera, FJ.... (2013). Phase behaviour of Ag2CrO4 under compression: Structural, vibrational, and optical properties. Journal of Physical Chemistry C. 117(23):12239-12248. https://doi.org/10.1021/jp401524sS12239122481172

    Identification of a human neonatal immune-metabolic network associated with bacterial infection

    Get PDF
    Understanding how human neonates respond to infection remains incomplete. Here, a system-level investigation of neonatal systemic responses to infection shows a surprisingly strong but unbalanced homeostatic immune response; developing an elevated set-point of myeloid regulatory signalling and sugar-lipid metabolism with concomitant inhibition of lymphoid responses. Innate immune-negative feedback opposes innate immune activation while suppression of T-cell co-stimulation is coincident with selective upregulation of CD85 co-inhibitory pathways. By deriving modules of co-expressed RNAs, we identify a limited set of networks associated with bacterial infection that exhibit high levels of inter-patient variability. Whereas, by integrating immune and metabolic pathways, we infer a patient-invariant 52-gene-classifier that predicts bacterial infection with high accuracy using a new independent patient population. This is further shown to have predictive value in identifying infection in suspected cases with blood culture-negative tests. Our results lay the foundation for future translation of host pathways in advancing diagnostic, prognostic and therapeutic strategies for neonatal sepsis

    Einleitung

    No full text

    Phase I, Dose-Escalation Study of BKM120, an Oral Pan-Class I PI3K Inhibitor, in Patients With Advanced Solid Tumors

    No full text
    Purpose This phase I dose-escalation study investigated the maximum-tolerated dose (MTD), safety, preliminary activity, pharmacokinetics (PK), and pharmacodynamics of BKM120, a potent and highly specific oral pan-Class I PI3K inhibitor. Patients and Methods Thirty-five patients with advanced solid tumors received daily BKM120 12.5 to 150 mg. Dose escalation was guided by a Bayesian logistic regression model with overdose control. Assessments included archival tumor molecular status, response by Response Evaluation Criteria in Solid Tumors (RECIST), positron emission tomography tracer uptake ([F-18] fluorodeoxyglucose positron emission tomography [FDG-PET]), fasting plasma C-peptide, and phosphorylated ribosomal protein S6 (pS6) in skin biopsies. Results Overall, treatment was well tolerated. Dose-limiting toxicities were grade 2 mood alteration (80 mg), grade 3 epigastralgia, grade 3 rash, grade 2 and grade 3 mood alteration (100 mg), and two grade 4 hyperglycemia (150 mg). The MTD was 100 mg/d. Frequent treatment-related adverse events included rash, hyperglycemia, diarrhea, anorexia, and mood alteration (37% each); nausea (31%); fatigue (26%); pruritus (23%); and mucositis (23%). BKM120 demonstrated rapid absorption, half-life of similar to 4 Conclusion This study demonstrates feasibility and proof-of-concept of class I PI3K inhibition in patients with advanced cancers. BKM120, at the MTD of 100 mg/d, is safe and well tolerated, with a favorable PK profile, clear evidence of target inhibition, and preliminary antitumor activity
    corecore