2,544 research outputs found
The Photonic Lantern
Photonic lanterns are made by adiabatically merging several single-mode cores
into one multimode core. They provide low-loss interfaces between single-mode
and multimode systems where the precise optical mapping between cores and
individual modes is unimportant.Comment: 45 pages; article unchanged, accepted for publication in Advances in
Optics and Photonic
Development of Advanced NDE Ultrasonic Equipment
Recent studies to determine the probability of detection of nondestructive examination methods by the Air Force indicate that these capabilities are severely limited. One of the factors contributing to the insufficiency of ultrasonic testing is related to a general lack of versatility and capability of commercial ultrasonic equipment. Inadequate instrument reliability, inconsistent components including transducers, and uncertain calibration standards further compromise the potential utility of this method. Battelle Pacific Northwest Laboratories, under the sponsorship of the manufacturing Technology Division of the Air Force Materials Laboratory, is developing an advanced ultrasonic nondestructive testing system directed at resolving these defficiencies. As a result, this program will establish a modular ultrasonic system specification that will prevent near term obsolescence by permitting the addition of new technology such as ARPA developments in the form of additional or replacement modules. This paper will describe the Phase I and II tasks and objectives which are planned to establish an equipment specification, demonstrate initial prototype systems, and provide a procurement specification and technical manuals. Progress to date will be summarized
The high-lying Li levels at excitation energy around 21 MeV
The H+He cluster structure in Li was investigated by the
H(,H He)n kinematically complete experiment at the incident
energy = 67.2 MeV. We have observed two resonances at =
21.30 and 21.90 MeV which are consistent with the He(H, )Li
analysis in the Ajzenberg-Selove compilation. Our data are compared with the
previous experimental data and the RGM and CSRGM calculations.Comment: 12 pages, 6 figures. Accepted for publication in J. Phys. Soc. Jp
Resonant Bend Loss in Leakage Channel Fibers
Leakage channel fibers, designed to suppress higher-order modes, demonstrate
resonant power loss at certain critical radii of curvature. Outside the
resonance, the power recovers to the levels offset by the usual mechanism of
bend-induced loss. Using C-imaging, we experimentally characterize this
anomaly and identify the corresponding physical mechanism as the radiative
decay of the fundamental mode mediated by the resonant coupling to a cladding
mode.Comment: 3 pages, 4 figures, submitted to Optics Letter
Magic wavelengths for the np-ns transitions in alkali-metal atoms
Extensive calculations of the electric-dipole matrix elements in alkali-metal
atoms are conducted using the relativistic all-order method. This approach is a
linearized version of the coupled-cluster method, which sums infinite sets of
many-body perturbation theory terms. All allowed transitions between the lowest
ns, np_1/2, np_3/2 states and a large number of excited states are considered
in these calculations and their accuracy is evaluated. The resulting
electric-dipole matrix elements are used for the high-precision calculation of
frequency-dependent polarizabilities of the excited states of alkali-metal
atoms. We find magic wavelengths in alkali-metal atoms for which the ns and
np_1/2 and np_3/2 atomic levels have the same ac Stark shifts, which
facilitates state-insensitive optical cooling and trapping.Comment: 12 pages, 8 figure
Low-loss criterion and effective area considerations for photonic crystal fibers
We study the class of endlessly single-mode all-silica photonic crystal
fibers with a triangular air-hole cladding. We consider the sensibility to
longitudinal nonuniformities and the consequences and limitations for realizing
low-loss large-mode area photonic crystal fibers. We also discuss the
dominating scattering mechanism and experimentally we confirm that both macro
and micro-bending can be the limiting factor.Comment: Accepted for Journal of Optics A - Pure and Applied Optic
Diffusion with rearranging traps
A model for diffusion on a cubic lattice with a random distribution of traps
is developed. The traps are redistributed at certain time intervals. Such
models are useful for describing systems showing dynamic disorder, such as
ion-conducting polymers. In the present model the traps are infinite, unlike an
earlier version with finite traps, this model has a percolation threshold. For
the infinite trap version a simple analytical calculation is possible and the
results agree qualitatively with simulation.Comment: Latex, five figure
Propagation of Light in Photonic Crystal Fibre Devices
We describe a semi-analytical approach for three-dimensional analysis of
photonic crystal fibre devices. The approach relies on modal transmission-line
theory. We offer two examples illustrating the utilization of this approach in
photonic crystal fibres: the verification of the coupling action in a photonic
crystal fibre coupler and the modal reflectivity in a photonic crystal fibre
distributed Bragg reflector.Comment: 15 pages including 7 figures. Accepted for J. Opt. A: Pure Appl. Op
- …