743 research outputs found

    Person-specific changes in motor performance accompany upper extremity functional gains after stroke

    Get PDF
    In animal models, hundreds of repetitions of upper extremity (UE) task practice promote neural adaptation and functional gain. Recently, we demonstrated improved UE function following a similar intervention for people after stroke. In this secondary analysis, computerized measures of UE task performance were used to identify movement parameters that changed as function improved. Ten people with chronic post-stroke hemiparesis participated in high-repetition UE task-specific training 3 times per week for 6 weeks. Before and after training, we assessed UE function with the Action Research Arm Test (ARAT), and evaluated motor performance using computerized motion capture during a reach-grasp-transport-release task. Movement parameters included the duration of each movement phase, trunk excursion, peak aperture, aperture path ratio, and peak grip force. Group results showed an improvement in ARAT scores (p = 0.003). Although each individual changed significantly on at least one movement parameter, across the group there were no changes in any movement parameter that reached or approached significance. Changes on the ARAT were not closely related to changes in movement parameters. Since aspects of motor performance that contribute to functional change vary across individuals, an individualized approach to upper extremity motion analysis appears warranted

    The power threshold of H-mode access in mixed hydrogen–tritium and pure tritium plasmas at JET with ITER-like wall

    Get PDF
    The heating power to access the high confinement mode (H-mode), PLH, scales approximately inversely with the isotope mass of the main ion plasma species as found in (protonic) hydrogen, deuterium and tritium plasmas in many fusion facilities over the last decades. In first dedicated L–H transition experiments at the Joint European Torus (JET) tokamak facility with the ITER-like wall (ILW), the power threshold, PLH, was studied systematically in plasmas of pure tritium and hydrogen–tritium mixtures at a magnetic field of 1.8 T and a plasma current of 1.7 MA in order to assess whether this scaling still holds in a metallic wall device. The measured power thresholds, PLH, in Ohmically heated tritium plasmas agree well with the expected isotope scaling for metallic walls and the lowest power threshold was found in Ohmic phases at low density. The measured power thresholds in ion cyclotron heated plasmas of pure tritium or hydrogen–tritium mixtures are significantly higher than the expected isotope mass scaling due to higher radiation levels. However, when the radiated power is taken into account, the ion cyclotron heated plasmas exhibit similar power thresholds as a neutral beam heated plasma, and are close to the scaling. The tritium plasmas in this study tended to higher electron heating fractions and, when heated with ion cyclotron waves, to relatively higher radiation fractions compared to other isotopes potentially impeding access to sustained H-modes.The authors thank P.A. Schneider, F. Ryter, A. Nielsen, and A. Kappatou for fruitful discussions and for help with data analysis tools. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom Research and Training Programme 2014–2018 and 2019–2020 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. G. Birkenmeier received funding from the Helmholtz Association under Grant No. VH-NG-1350.Peer Reviewed"Article signat per 27 autors/es: G. Birkenmeier, E.R. Solano, E. Lerche, D. Taylor, D. Gallart, M.J. Mantsinen, E. Delabie, I.S. Carvalho, P. Carvalho, E. Pawelec, J.C. Hillesheim, F. Parra Diaz, C. Silva, S. Aleiferis, J. Bernardo, A. Boboc, D. Douai, E. Litherland-Smith, R. Henriques, K.K. Kirov, C.F. Maggi, J. Mailloux, M. Maslov, F.G. Rimini, S.A. Silburn, P. Sirén, H. Weisen and JET Contributors"Postprint (published version

    Connecting the global H-mode power threshold to the local radial electric field at ASDEX Upgrade

    Get PDF
    The relation between the macroscopic input power required at ASDEX Upgrade to access the H-mode Pthr and the microscopic E x B shear has been investigated via fast charge-exchange recombination spectroscopy (CXRS) measurements at various toroidal magnetic fields, different electron densities, and in both hydrogen and deuterium plasmas. For the H-mode onset, a threshold in the v E x B minimum, an approximation of the E x B shear, has been found. This identifies v E x B and not Er as the important player for the L-H transition. A database of measurements including CXRS, Doppler reflectometry measurements and comparison to neoclassical approximations shows a threshold v E x B of (6.7 ± 1.0) km/s ranging over a factor of three in Pthr. Using these findings, a simple derivation of the Pthr scaling is proposed giving a physics interpretation of the Bt, density and surface dependence of Pthr.EUROfusion Consortium Grant Agreement No. 63305

    Effects of density gradients and fluctuations at the plasma edge on ECEI measurements at ASDEX Upgrade

    Get PDF
    Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (Te) and its fluctuations (δTe). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%–15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (Trad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s–1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s–1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.EUROfusion Consortium 63305
    • …
    corecore