1,370 research outputs found

    On the convergence rate of the Dirichlet-Neumann iteration for unsteady thermal fluid structure interaction

    Get PDF
    We consider the Dirichlet-Neumann iteration for partitioned simulation of thermal fluid-structure interaction, also called conjugate heat transfer. We analyze its convergence rate for two coupled fully discretized 1D linear heat equations with jumps in the material coefficients across these. These are discretized using implicit Euler in time, a finite element method on one domain, a finite volume method on the other one and variable aspect ratio. We provide an exact formula for the spectral radius of the iteration matrix. This shows that for large time steps, the convergence rate is the aspect ratio times the quotient of heat conductivities and that decreasing the time step will improve the convergence rate. Numerical results confirm the analysis and show that the 1D formula is a good estimator in 2D and even for nonlinear thermal FSI applications.Comment: 29 pages, 20 figure

    Fast Solvers for Unsteady Thermal Fluid Structure Interaction

    Full text link
    We consider time dependent thermal fluid structure interaction. The respective models are the compressible Navier-Stokes equations and the nonlinear heat equation. A partitioned coupling approach via a Dirichlet-Neumann method and a fixed point iteration is employed. As a refence solver a previously developed efficient time adaptive higher order time integration scheme is used. To improve upon this, we work on reducing the number of fixed point coupling iterations. Thus, first widely used vector extrapolation methods for convergence acceleration of the fixed point iteration are tested. In particular, Aitken relaxation, minimal polynomial extrapolation (MPE) and reduced rank extrapolation (RRE) are considered. Second, we explore the idea of extrapolation based on data given from the time integration and derive such methods for SDIRK2. While the vector extrapolation methods have no beneficial effects, the extrapolation methods allow to reduce the number of fixed point iterations further by up to a factor of two with linear extrapolation performing better than quadratic.Comment: 17 page

    Images

    Get PDF

    Gulf of Venezuela: Border Dispute

    Get PDF

    Waveform Relaxation with asynchronous time-integration

    Full text link
    We consider Waveform Relaxation (WR) methods for partitioned time-integration of surface-coupled multiphysics problems. WR allows independent time-discretizations on independent and adaptive time-grids, while maintaining high time-integration orders. Classical WR methods such as Jacobi or Gauss-Seidel WR are typically either parallel or converge quickly. We present a novel parallel WR method utilizing asynchronous communication techniques to get both properties. Classical WR methods exchange discrete functions after time-integration of a subproblem. We instead asynchronously exchange time-point solutions during time-integration and directly incorporate all new information in the interpolants. We show both continuous and time-discrete convergence in a framework that generalizes existing linear WR convergence theory. An algorithm for choosing optimal relaxation in our new WR method is presented. Convergence is demonstrated in two conjugate heat transfer examples. Our new method shows an improved performance over classical WR methods. In one example we show a partitioned coupling of the compressible Euler equations with a nonlinear heat equation, with subproblems implemented using the open source libraries DUNE and FEniCS

    A multirate Neumann-Neumann waveform relaxation method for heterogeneous coupled heat equations

    Full text link
    An important challenge when coupling two different time dependent problems is to increase parallelization in time. We suggest a multirate Neumann-Neumann waveform relaxation algorithm to solve two heterogeneous coupled heat equations. In order to fix the mismatch produced by the multirate feature at the space-time interface a linear interpolation is constructed. The heat equations are discretized using a finite element method in space, whereas two alternative time integration methods are used: implicit Euler and SDIRK2. We perform a one-dimensional convergence analysis for the nonmultirate fully discretized heat equations using implicit Euler to find the optimal relaxation parameter in terms of the material coefficients, the stepsize and the mesh resolution. This gives a very efficient method which needs only two iterations. Numerical results confirm the analysis and show that the 1D nonmultirate optimal relaxation parameter is a very good estimator for the multirate 1D case and even for multirate and nonmultirate 2D examples using both implicit Euler and SDIRK2.Comment: 32 pages, 12 figure
    • …
    corecore