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Abstract

We consider the Dirichlet-Neumann iteration for partitioned simulation
of thermal fluid-structure interaction, also called conjugate heat transfer.
We analyze its convergence rate for two coupled fully discretized 1D linear
heat equations with jumps in the material coefficients across these. These
are discretized using implicit Euler in time, a finite element method on
one domain, a finite volume method on the other one and variable aspect
ratio. We provide an exact formula for the spectral radius of the iteration
matrix. This shows that for large time steps, the convergence rate is the
aspect ratio times the quotient of heat conductivities and that decreasing
the time step will improve the convergence rate. Numerical results confirm
the analysis and show that the 1D formula is a good estimator in 2D and
even for nonlinear thermal FSI applications.

Keywords: Thermal Fluid Structure Interaction, Coupled Problems, Trans-
mission Problem, Fixed Point Iteration, Dirichlet-Neumann Iteration

1 Introduction

The Dirichlet-Neumann iteration is a basic method in both domain decompo-
sition and fluid structure interaction (FSI). In the latter case, the iteration
arises in a partitioned approach [11], where different codes for the sub-problems
are reused and the coupling is done by a master program which calls interface
functions of the other codes. This allows to reuse existing software for each
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sub-problem, in contrast to a monolithic approach, where a new code is tailored
for the coupled equations. To satisfy coupling conditions at the interface, the
subsolvers are iterated by providing Dirichlet- and Neumann data for the other
solver in a sequential manner, giving rise to its name.

In the domain decomposition context, the iteration has two main problems,
namely slow convergence and the need for an implementation using a red-black
colouring. The slow convergence can be slightly improved using a relaxation
procedure. In fluid structure interaction, there are typically only two domains,
coupled along an interface, making the application straight forward. The con-
vergence rate for the interaction of a flexible structure with a fluid has been
analyzed in [30]. There, the added mass effect is proven to be dependent on
the step size for compressible flows and independent for incompressible flows.
However, the convergence rate is not great for the coupling between a compress-
ible fluid and a structure [10], which is why a lot of effort goes into convergence
acceleration. Furthermore, for incompressible fluids it is known that the ra-
tio of densities of the materials plays an important role [1, 9]. Finally, the
Dirichlet-Neumann iteration was reported to be a very fast solver for thermal
fluid structure interaction [4].

Our prime motivation here is thermal interaction between fluids and struc-
tures, also called conjugate heat transfer. There are two domains with jumps in
the material coefficients across the connecting interface. Conjugate heat trans-
fer plays an important role in many applications and its simulation has proved
essential [2]. Examples for thermal fluid structure interaction are cooling of
gas-turbine blades, thermal anti-icing systems of airplanes [8], supersonic reen-
try of vehicles from space [21, 17], gas quenching, which is an industrial heat
treatment of metal workpieces [15, 28] or the cooling of rocket nozzles [18, 19].

For the case of coupled heat equations, a 1D stability analysis was pre-
sented by Giles [14]. There, an explicit time integration method was chosen
with respect to the interface unknows. On the other hand, Henshaw and Chand
provided in [16] a method to analyze stability and convergence speed of the
Dirichlet-Neumann iteration in 2D based on applying the continuous Fourier
transform to the semi-discretized equations. They show that the ratios of ther-
mal conductivities and diffusivities of the materials play an important role. This
is similar to the result names above in classical FSI with incompressible fluids
where the performance is affected by the ratio of densities of the materials [1, 9].

However, in the fully discrete case we observe in some cases that the iter-
ation behaves differently, because some aspects of the problem are not taken
into account by the semidiscrete analysis: The effect of ∆t is not accurately
represented and neither are possibly different mesh widths in the two problems.
This matters particularly for compressible fluids where a high aspect ratio grid
is needed to accurately represent the boundary layer. This leads to geometric
stiffness that significantly influences the convergence rate, as we will show.

For the fully discrete case, the convergence rate is in principle analyzed in
any standard book on domain decomposition methods, e.g. [26, 29]. There, the
iteration matrix is derived in terms of the stiffness and mass matrices of finite
element discretizations and the convergence rate is the spectral radius of that.
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However, this does not provide a quantitative answer, since the spectral radius
is unknown. Computing the spectral radius is in general a non trivial task. In
our context, the material properties are discontinuous across the interface and
as a consequence, computing the spectral radius of the iteration matrix is even
more difficult.

In [23, 25], a convergence analysis of the Dirichlet-Neumann iteration for the
unsteady transmission problem using finite element methods (FEM) on both
subdomains is presented. A similar analysis using finite differences (FDM) on
one domain and FEM on the other one can be found in [24]. In addition, the
corresponding analysis when coupling finite volumes (FVM) with FEM is de-
scribed in [5, 23]. All these results assume equal mesh sizes on both subdomains,
i.e, the aspect ratio is equal to one.

Thus, we present here a complete discretization of the coupled problem using
FVM in space on one domain and FEM on the other one with variable aspect
ratio r. We consider this to be a relevant case, because these are the standard
discretizations for the subproblems. The implicit Euler method is used for the
temporal discretization. Then, we derive the spectral radius of the iteration
matrix exactly in terms of the eigendecomposition of the resulting matrices for
the one dimensional case. The asymptotic convergence rates when approaching
the continuous case in either time or space are also determined. In the spatial
limit, the convergence rate turns out to be proportional to the aspect ratio r,
whereas in the temporal limit, we obtain 0. Note that for FEM-FEM couplings,
this is not the case. Moreover, we also include numerical results where it is
shown that the one dimensional formula is a good estimator for a 2D version
of the coupled heat equations and for two non linear FSI models, namely the
cooling of a flat plate and the cooling of a flanged shaft.

An outline of the paper now follows. In section 2, we describe the model and
discretization, as well as the coupling conditions and the Dirichlet-Neumann it-
eration. Two thermal FSI test cases are introduced in section 3: the cooling of
a flat plate and of a flanged shaft. For these, we present numerical convergence
rates, motivating further analysis. A model problem, consisting of two coupled
discretized heat equations, is presented in section 4 and then analyzed in 1D in
section 5. In section 6, extension of the analysis to 2D and different discretiza-
tions are discussed. In section 7, the analytical results are compared to linear
and nonlinear numerical results.

2 Thermal FSI Methodology

The basic setting we are in is that on a domain Ω1 ⊂ Rd where d corresponds
to the spatial dimension, the physics is described by a fluid model, whereas on
a domain Ω2 ⊂ Rd, a different model describing the structure is used. The two
domains are almost disjoint in that they are connected via an interface. The
part of the interface where the fluid and the structure are supposed to interact is
called the coupling interface Γ ⊂ ∂Ω1∪∂Ω2. Note that Γ might be a true subset
of the intersection, because the structure could be insulated. At the interface
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Γ, coupling conditions are prescribed that model the interaction between fluid
and structure. For the thermal coupling problem, these conditions are that
temperature and the normal component of the heat flux are continuous across
the interface.

2.1 Fluid Model

We model the fluid using the time dependent compressible Navier-Stokes equa-
tions, which are a second order system of conservation laws (mass, momentum,
energy) modeling compressible flow. We consider the two dimensional case,
written in conservative variables density ρ, momentum m = ρv and energy per
unit volume ρE as:

∂tρ+∇ · ρv = 0,

∂tρvi +

2∑
j=1

∂xj
(ρvivj + pδij) =

1

Re

2∑
j=1

∂xj
Sij , i = 1, 2, (1)

∂tρE +∇ · (ρHvj) =
1

Re

2∑
j=1

∂xj

(
Sijvi +

qj
Pr

)
.

Here, enthalpy is given by H = E + p/ρ with p = (γ − 1)ρ(E − 1/2|v|2) being
the pressure and γ = 1.4 the adiabatic index for an ideal gas. Furthermore,
qf = (q1, q2)T represents the heat flux and S = (Sij)i,j=1,2 the viscous shear
stress tensor. As the equations are dimensionless, the Reynolds number Re
and the Prandtl number Pr appear. The system is closed by the equation
of state for the pressure p = (γ − 1)ρe, the Sutherland law representing the
correlation between temperature and viscosity, as well as the Stokes hypothesis.
Additionally, we prescribe appropriate boundary conditions at the boundary
of Ω1 except for Γ, where we have the coupling conditions. In the Dirichlet-
Neumann coupling, a temperature value is enforced at Γ.

2.2 Structure Model

Regarding the structure model, we will consider heat conduction only. Thus,
we have the nonlinear heat equation for the structure temperature Θ

ρ(x)cp(Θ)
d

dt
Θ(x, t) = −∇ ·q(x, t), (2)

where
qs(x, t) = −λ(Θ)∇Θ(x, t)

denotes the heat flux vector. For alloys, the specific heat capacity cp and heat
conductivity λ are temperature-dependent and highly nonlinear.

As an example, an empirical model for the steel 51CrV4 was suggested in
[27]. This was obtained measurements and a least squares fit to a chosen curve.
The coefficient functions are then
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λ(Θ) = 40.1 + 0.05Θ− 0.0001Θ2 + 4.9 · 10−8Θ3 (3)

and

cp(Θ) = −10 ln

(
e−cp1(Θ)/10 + e−cp2(Θ)/10

2

)
(4)

with

cp1(Θ) = 34.2e0.0026Θ + 421.15 (5)

and

cp2(Θ) = 956.5e−0.012(Θ−900) + 0.45Θ. (6)

For the mass density one has ρ = 7836 kg/m3.
Finally, on the boundary, we have Neumann conditions qs(x, t) ·n(x) =

qb(x, t).

2.3 Coupling Conditions

As mentioned before, the coupling conditions are that temperature and the
normal component of the heat flux are continuous across the interface, i.e;

T (x, t) = Θ(x, t), x ∈ Γ, (7)

where T is the fluid temperature and Θ the structure temperature and

qf (x, t) ·n(x) = qs(x, t) ·n(x), x ∈ Γ. (8)

2.4 Discretization in Space

Following the partitioned coupling approach, we discretize the two models sep-
arately in space. For the fluid, we use a finite volume method, leading to the
following equation for all unknowns on Ω1:

d

dt
u + h(u,ΘΓ) = 0, (9)

where h(u,ΘΓ) represents the spatial discretization and its dependence on the
temperatures on the discrete interface to the structure, here denoted by ΘΓ.

Regarding structural mechanics, the use of finite element methods is ubiqui-
tious. Therefore, we will also follow that approach here, using quadratic finite
element one gets the following nonlinear equation for all unknowns on Ω2:

M(Θ)
d

dt
Θ + A(Θ)Θ = qfb + qΓ

b (u). (10)
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Here, M is the mass matrix, also called heat capacity matrix for this problem
and A is the heat conductivity and stiffness matrix. The vector Θ consists of
all discrete temperature unknowns and qΓ

b (u) is the discrete heat flux vector on

the coupling interface to the fluid, whereas qfb corresponds to boundary heat
fluxes independent of the fluid, for example at insulated boundaries.

2.5 Time Discretization

In time, we use the implicit Euler method with constant time step ∆t. For the
system (9)-(10) we obtain

un+1 − un + ∆th(un+1,Θn+1
Γ ) = 0, (11)

M(Θn+1)(Θn+1 −Θn) + ∆tA(Θn+1)Θn+1 = ∆t(qfb + qΓ
b (un+1)). (12)

2.6 The Dirichlet-Neumann Method

The Dirichlet-Neumann method is a basic iterative substructuring method in
domain decomposition and it is a common choice for treating FSI problems.
Therefore, we now employ it to solve the system (11)-(12). This corresponds to
alternately solving equation (11) on Ω1 with Dirichlet data on Γ and (12) on
Ω2 with Neumann data on Γ.

Thus, one gets for the k-th iteration the two decoupled equation systems

un+1,k+1 − un + ∆th(un+1,k+1,Θn+1,k
Γ ) = 0, (13)

M(Θn+1,k+1)(Θn+1,k+1 −Θn) + ∆tA(Θn+1,k+1)Θn+1,k+1 = ∆t(qfb + qΓ
b (un+1,k+1)),

(14)

with some initial condition Θ0
Γ. The iteration is terminated according to the

standard criterion
‖Θk+1

Γ −Θk
Γ‖ ≤ τ (15)

where τ is a user defined tolerance.

3 Thermal FSI Test Cases

In this section we present two thermal FSI test cases that are solved using
the methodology explained in the previous section. The aim of this paper is
to estimate the convergence rates of the Dirichlet-Neumann iteration used as
a solver for thermal FSI problems. Therefore, we first want to illustrate the
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behavior for two examples before proceeding to the convergence analysis in the
next section. Two different test cases are discussed: the cooling of a flat plate
and the cooling of a flanged shaft. For the first problem, structured grids are
used and for the second, unstructured grids.

For the coupling, the Dirichlet-Neumann method as presented in (13)-(14) is
used. A fixed tolerance of 1e−8 is chosen for all involved equation solvers. The
coupling code used has been developed in a series of papers [7, 6, 4]. It’s main
feature is time adaptivity, which is not employed here. The coupling between
the solvers is done using the Component Template Library (CTL) [20]. In the
fluid, the DLR TAU-Code in its 2014.2 version is employed [13], which is a cell-
vertex-type finite volume method with AUSMDV as flux function and a linear
reconstruction to increase the order of accuracy. The finite element code uses
quadratic finite elements and is the inhouse code Native of the Institute for
Static and Dynamic at the University of Kassel.

3.1 Flow over a plate

The first test case is the cooling of a flat steel plate resembling a simple work
piece [7]. The work piece is initially at a much higher temperature than the
fluid and then cooled by a constant laminar air stream, see figure 1.

Figure 1: Sketch of the cooling of a flat plate.

The inlet is given on left, where air enters the domain with an initial velocity
of Ma∞ = 0.8 in horizontal direction and a temperature of 273K. Regarding the
initial condition in the structure, a constant temperature of 900K at t = 0 is
chosen throughout.

The grid, see figure 2, is chosen cartesian and equidistant in the structural
part. In the fluid region the thinest cells are on the boundary and then become
coarser in y-direction with a maximal aspect ratio of r = 1.7780e5. The points of
the primary fluid grid and the nodes of the structural grid match on the interface
Γ and there are 9660 cells in the fluid region and nx × ny = 120 × 9 = 1080
elements with 121× 10 = 1210 nodes in the region of the structure.

Figure 5a shows the convergence behaviour of the Dirichlet-Neumann itera-
tion against the time step ∆t. One observes how the convergence rates is roughly
proportional to the time step ∆t. Furthermore, even for ∆t = 1 a reduction of
the error by a factor of ten per iteration is achieved.
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Figure 2: Full grid (left) and zoom into coupling region (right).

3.2 Cooling of a flanged shaft

The second test case is the cooling of a flanged steel shaft by cold high pressured
air (this process is also known as gas quenching) [31]. Here, we have a hot flanged
shaft that is cooled by cold high pressured air coming out of small tubes, see
figure 3. We assume symmetry along the horizontal axis in order to consider one
half of the flanged shaft and two tubes blowing air at it. We also assume that
the air leaves the tube in straight and uniform way at a Mach number of 1.2.
Moreover, we assume a freestream in x-direction of Mach 0.005. The Reynolds
number is Re = 2500 and the Prandtl number Pr = 0.72.

Figure 3: Sketch of the cooling of the flanged shaft.

The grid, see figure 4, consists of 279212 cells in the fluid, which is the dual
grid of an unstructured grid of quadrilaterals in the boundary layer and triangles
in the rest of the domain, and 1997 quadrilateral elements in the structure.
Regarding the initial conditions, we use the procedure explained in [4].

Figure 5b shows the convergence behaviour of the Dirichlet-Neumann itera-
tion against the time step ∆t. The convergence rate is again about proportional
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Figure 4: Full grid (left) and zoom into shaft region (right).

to the time step size and again convergent even for very large time steps. If we
compare the rates for the two problems, we observe that for a given ∆t, the
iteration is about a factor ten faster for the plate.
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(a) Test case 1: Flow over a plate
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(b) Test case 2: Cooling of a flanged shaft

Figure 5: Convergence behavior of the cooling systems with respect to ∆t.

Summarizing, the Dirichlet-Neumann iteration is a very fast solver for ther-
mal FSI. To understand this better, we perform in the next section a convergence
analysis for the case of two coupled linear heat equations.

4 A Model Problem: Coupled Heat Equations

We present here a convergence analysis of the unsteady transmission problem
with mixed discretizations. In particular, we choose a finite volume method
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(FVM) on the first subdomain and a finite element method (FEM) on the second
subdomain.

4.1 Model Problem

The unsteady transmission problem is as follows, where we consider a domain
Ω ⊂ Rd which is cut into two subdomains Ω1 ∪ Ω2 = Ω with transmission
conditions at the interface Γ = Ω1 ∩ Ω2:

αm
∂um(x, t)

∂t
−∇ · (λm∇um(x, t)) = 0, t ∈ [t0, tf ], x ∈ Ωm ⊂ Rd, m = 1, 2,

um(x, t) = 0, t ∈ [t0, tf ], x ∈ ∂Ωm\Γ,
u1(x, t) = u2(x, t), x ∈ Γ,

λ2
∂u2(x, t)

∂n2
= −λ1

∂u1(x, t)

∂n1
, x ∈ Γ,

um(x, 0) = u0
m(x), x ∈ Ωm,

(16)

where nm is the outward normal to Ωm for m = 1, 2.
The constants λ1 and λ2 describe the thermal conductivities of the materials

on Ω1 and Ω2 respectively. D1 and D2 represent the thermal diffusivities of the
materials and they are defined by

Dm =
λm
αm

, with αm = ρmcpm (17)

where ρm represents the density and cpm the specific heat capacity of the ma-
terial placed in Ωm, m = 1, 2.

We always use the implicit Euler method for time discretization. With re-
gards to the spatial discretization, we use FVM on Ω1 and FEM on Ω2.

4.2 Semidiscrete Analysis

Before we present in the next section an analysis for the fully discrete equa-
tions, we want to describe previous results about the behaviour of the Dirichlet-
Neumann iteration for the transmission problem in the semi discrete case.

Henshaw and Chand applied in [16] the implicit Euler method for the time
discretization on both equations in (16) but kept the space continuous. Then,
they applied the Fourier transform in space in order to transform the second
order derivatives into algebraic expressions. Once they have a coupled system
of algebraic equations, they insert one into the other and obtain the Dirichlet-
Neumann convergence rate β:
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β =

∣∣∣∣∣∣−λ1

λ2

√
D2

D1

tanh
(
− 1√

D2∆t

)
tanh

(
1√
D1∆t

)
∣∣∣∣∣∣ . (18)

For ∆t small enough, we have tanh
(
−1/
√
D2∆t

)
≈ −1 and tanh

(
1/
√
D1∆t

)
≈

1 and therefore:

β ≈ λ1

λ2

√
D2

D1
. (19)

On the other hand, for ∆t big enough, we have tanh
(
−1/
√
D2∆t

)
≈ −1/

√
D2∆t

and tanh
(
1/
√
D1∆t

)
≈ 1/

√
D1∆t and therefore:

β ≈ λ1

λ2

√
D2

D1

√
D1∆t√
D2∆t

=
λ1

λ2
. (20)
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Figure 6: Semidiscrete estimator β in (18) against ∆t.

Figure 6 shows β as a function of ∆t. It is almost constant, except for a
short dynamic transition between (λ1/λ2)

√
D2/D1 and λ1/λ2.

Finally, one observes in (20) that the convergence rates of the Dirichlet-
Neumann iteration are given by the quotient of thermal conductivities for ∆t
large. This suggests that strong jumps in the thermal conductivities of the
materials give fast convergence.

4.3 Space Discretization

We now describe a rather general space discretization of the model problem.
The core property we need is that the meshes of Ω1 and Ω2 share the same
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Figure 7: Splitting of Ω between finite volumes and finite elements.

nodes on Γ as shown in Figure 7. Furthermore, we need that there is a specific
set of unknowns associated with the interface nodes. Otherwise, we allow at
this point for arbitraty meshes on both sides.

Then, letting u
(1)
I correspond to the unknowns on Ω1 and uΓ to the un-

knowns at the interface Γ, we can write a general discretization of the first
equation in (16) in a compact form as:

M1u̇
(1)
I + M

(1)
IΓ u̇Γ + A1u

(1)
I + A

(1)
IΓ uΓ = 0. (21)

On the other hand, a general discretization of the first equation in (16) on
Ω2 can be written as:

M2u̇
(2)
I + M

(2)
IΓ u̇Γ + A2u

(2)
I + A

(2)
IΓ uΓ = 0. (22)

where u
(2)
I correspond to the unknowns on Ω2.

To close the system, we need an approximation of the normal derivatives at
Γ. For the FVM on Ω1, we approximate the normal derivative with respect to
u1 using second order one-sided finite differences:

−λ1
∂u1

∂n1
≈ λ1

2∆x
(4u1,N (t)− u1,N−1(t)− 3uΓ). (23)

On the other hand, let φj be a nodal FE basis function on Ω2 for a node on
Γ we observe that the normal derivative with respect to u2 can be written as a
linear functional using Green’s formula [29, pp. 3]. Thus, the approximation of
the normal derivative is given by

λ2

∫
Γ

∂u2

∂n2
φjdS = λ2

∫
Ω2

(∆u2φj +∇u2∇φj)dx

= α2

∫
Ω2

d

dt
u2φj + λ2

∫
Ω2

∇u2∇φjdx.
(24)
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Consequently, the equation

M
(2)
ΓΓu̇Γ + M

(2)
ΓI u̇

(2)
I + A

(2)
ΓΓuΓ + A

(2)
ΓI u

(2)
I = −M

(1)
ΓΓu̇Γ −M

(1)
ΓI u̇

(1)
I −A

(1)
ΓΓuΓ −A

(1)
ΓI u

(1)
I ,

(25)

is a discrete version of the fourth equation in (16) and completes the system
(21)-(22). Notice that the left hand side of (25) comes from (24) and the right
hand side from (23). We can now write the coupled equations (21), (22) and

(25) as an ODE for the vector of unknowns u =
(
u

(1)
I ,u

(2)
I ,uΓ

)T
M̃u̇ + Ãu = 0, (26)

where

M̃ =

 M1 0 M
(1)
IΓ

0 M2 M
(2)
IΓ

M
(1)
ΓI M

(2)
ΓI M

(1)
ΓΓ + M

(2)
ΓΓ

 , Ã =

 A1 0 A
(1)
IΓ

0 A2 A
(2)
IΓ

A
(1)
ΓI A

(2)
ΓI A

(1)
ΓΓ + A

(2)
ΓΓ

 .

4.4 Time Discretization

Applying the implicit Euler method with time step ∆t to the system (25), we

get for the vector of unknowns un+1 = (u
(1),n+1
I ,u

(2),n+1
I ,un+1

Γ )T

Aun+1 = M̃un, (27)

where

A = M̃ + ∆tÃ =

 M1 + ∆tA1 0 M
(1)
IΓ + ∆tA

(1)
IΓ

0 M2 + ∆tA2 M
(2)
IΓ + ∆tA

(2)
IΓ

M
(1)
ΓI + ∆tA

(1)
ΓI M

(2)
ΓI + ∆tA

(2)
ΓI MΓΓ + ∆tAΓΓ

 ,

with MΓΓ = M
(1)
ΓΓ + M

(2)
ΓΓ and AΓΓ = A

(1)
ΓΓ + A

(2)
ΓΓ .

4.5 Dirichlet-Neumann Iteration

We now employ a Dirichlet-Neumann iteration to solve the discrete system
(27). This corresponds to alternately solving the discretized equations of the
transmission problem (16) on Ω1 with Dirichlet data on Γ and the discretization
of (16) on Ω2 with Neumann data on Γ.

Therefore, from (27) one gets for the k-th iteration the two equation systems
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(M1 + ∆tA1)u
(1),n+1,k+1
I = −(M

(1)
IΓ + ∆tA

(1)
IΓ )un+1,k

Γ + M1u
(1),n
I + M

(1)
IΓ unΓ,

(28)

Âûk+1 = M̂un − bk, (29)

to be solved in succession. Here,

Â =

(
M2 + ∆tA2 M

(2)
IΓ + ∆tA

(2)
IΓ

M
(2)
ΓI + ∆tA

(2)
ΓI M

(2)
ΓΓ + ∆tA

(2)
ΓΓ

)
, M̂ =

(
0 M2 M

(2)
IΓ

M
(1)
ΓI M

(2)
ΓI MΓΓ

)
,

and

bk =

(
0

(M
(1)
ΓI + ∆tA

(1)
ΓI )u

(1),n+1,k+1
I + (M

(1)
ΓΓ + ∆tA

(1)
ΓΓ)un+1,k

Γ

)
, (30)

ûk+1 =

(
u

(2),n+1,k+1
I

un+1,k+1
Γ

)
,

with some initial condition, here un+1,0
Γ = unΓ. The iteration is terminated

according to the standard criterion ‖uk+1
Γ − ukΓ‖ ≤ τ where τ is a user defined

tolerance [3].
One way to analyze this method is to write it as a splitting method for

(27) and try to estimate the spectral radius of that iteration. However, the
results obtained in this way are much too inaccurate. For that reason, we now
rewrite (28)-(29) as an iteration for un+1

Γ to restrict the size of the space to
the dimension of uΓ which is much smaller. To this end, we isolate the term

u
(1),n+1,k+1
I in (28) and u

(2),n+1,k+1
I in the first equation in (29) and we insert

the resulting expressions into the second equation in (29). Consequently, the

iteration un+1,k+1
Γ = Σun+1,k

Γ + ψn is obtained with iteration matrix

Σ = −S(2)−1
S(1), (31)

where

S(m) = (M
(m)
ΓΓ + ∆tA

(m)
ΓΓ )− (M

(m)
ΓI + ∆tA

(m)
ΓI )(Mm + ∆tAm)−1(M

(m)
IΓ + ∆tA

(m)
IΓ ),

(32)

for m = 1, 2 and ψn contains terms that depend only on the solutions at the
previous time step. Notice that Σ is a discrete version of the Steklov-Poincaré
operator.

Thus, the Dirichlet-Neumann iteration is a linear iteration and the rate of
convergence is described by the spectral radius of the iteration matrix Σ.
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5 One-Dimensional Convergence Analysis

The derivation so far was for a rather general discretization. In this section, we
study the iteration matrix Σ for a specific FVM-FEM discretization in 1D. We
will give an exact formula for the convergence rates. The behaviour of the rates
when approaching both the continuous case in time and space is also given.

Figure 8: Grid cells over Ω1 and Ω2 for the finite volume discretization and the
finite element discretization respectively.

Specifically, we use Ω1 = [−1, 0], Ω2 = [0, 1]. For the FVM discretization,
we consider a primal grid, i.e, we discretize Ω1 into N1 equal sized grid cells of
size ∆x1 = 1/(N1 + 1), and define xi = i∆x1, so that xi is the center of the cell
i, see figure 8. The edges of cell i are then xi−1/2 and xi+1/2 and they form the
corresponding dual grid. Moreover, we use the flux function

F (uL, uR) = − λ1

∆x1
(u1,i − u1,i−1), (33)

to approximate the flux, which results in a second order scheme. For the FEM
discretization, we use the standard piecewise-linear polynomials as test func-
tions. Here we discretize Ω2 into N2 equal sized cells of size ∆x2 = 1/(N2 + 1).

For the coupling between a compressible fluid and a structure, there would
be a boundary layer in the fluid, meaning that the mesh would be very fine in
direction normal to the boundary, implying ∆x1 � ∆x2.

With em,j =
(

0 · · · 0 1 0 · · · 0
)T ∈ RNm where the only nonzero

entry is located at the j-th position, the discretization matrices are given by

A1 =
λ1

∆x2
1


−2 1 0

1 −2
. . .

. . .
. . . 1

0 1 −2

 , A2 =
λ2

∆x2
2


2 −1 0

−1 2
. . .

. . .
. . . −1

0 −1 2

 ,

M2 =
α2

6


4 1 0

1 4
. . .

. . .
. . . 1

0 1 4

 , A
(1)
ΓΓ =

3λ1

2∆x2
1

, A
(2)
ΓΓ =

λ2

∆x2
2

, M
(2)
ΓΓ =

2α2

6
,
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A
(1)
IΓ =

λ1

∆x2
1

e1,N1
, A

(2)
IΓ = − λ2

∆x2
2

e2,1, M
(2)
IΓ =

α2

6
e2,1,

A
(1)
ΓI =

λ1

2∆x2
1

(4eT1,N1
− eT1,N1−1), A

(2)
ΓI = − λ2

∆x2
2

eT2,1, M
(2)
ΓI =

α2

6
eT2,1.

where Am, Mm ∈ RNm×Nm , A
(m)
IΓ , M

(2)
IΓ ∈ RNm×1 and A

(m)
ΓI , M

(2)
ΓI ∈ R1×Nm

for m = 1, 2.

In this case, M1 = α1I, M
(1)
IΓ = M

(1)
ΓΓ = M

(1)
ΓI = 0. Thus,

S(1) = ∆tA
(1)
ΓΓ −∆t2A

(1)
ΓI (α1I−∆tA1)−1A

(1)
IΓ , (34)

S(2) = (M
(2)
ΓΓ + ∆tA

(2)
ΓΓ)− (M

(2)
ΓI + ∆tA

(2)
ΓI )(M2 + ∆tA2)−1(M

(2)
IΓ + ∆tA

(2)
IΓ ).
(35)

Note that the iteration matrix Σ is just a real number in this case and thus
its spectral radius is its modulus. One computes S(1) and S(2) by inserting the
corresponding matrices specified above in (34) and (35) obtaining

S(1) = ∆t
3λ1

2∆x2
1

−∆t2
λ2

1

2∆x4
1

(4eT1,N1
− eT1,N1−1)(α1I−∆tA1)−1e1,N1

= ∆t
3λ1

2∆x2
1

−∆t2
λ2

1

2∆x4
1

(4α1
N1N1

− α1
N1−1N1

),

(36)

S(2) =

(
α2

3
+ ∆t

λ2

∆x2
2

)
−
(
α2

6
−∆t

λ2

∆x2
2

)2

eT2,1(M2 + ∆tA2)−1e2,1

=

(
α2

3
+ ∆t

λ2

∆x2
2

)
−
(
α2

6
−∆t

λ2

∆x2
2

)2

α2
11,

(37)

where α1
ij represents the entries of the matrix (α1I − ∆tA1)−1 and α2

ij the

entries of (M2 + ∆tA2)−1 for i, j = 1, ..., N1 and i, j = 1, ..., N2 respectively.
Observe that the matrices (α1I − ∆tA1)−1 and (M2 + ∆tA2) are tridiagonal
Toeplitz matrices but their inverses are full matrices. The computation of the
exact inverses is based on a recursive formula which runs over the entries [12]
and consequently, it is non trivial to compute α1

N1N1
, α1

N1−1N1
and α2

11 this way.
Due to these difficulties, we propose to rewrite the matrices (α1I−∆tA1)−1

and (M2 + ∆tA2)−1 in terms of their eigendecomposition:

(α1I−∆tA1)−1 =

[
tridiag

(
−λ1∆t

∆x2
1

,
α1∆x2

1 + 2λ1∆t

∆x2
1

,−λ1∆t

∆x2
1

)]−1

= VN1Λ−1
1 VN1 ,

(38)
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(M2 + ∆tA2)−1 =

[
tridiag

(
α2∆x2

2 − 6λ2∆t

6∆x2
2

,
2α2∆x2

2 + 6λ2∆t

3∆x2
2

,
α2∆x2

2 − 6λ2∆t

6∆x2
2

)]−1

= VN2
Λ−1

2 VN2
,

(39)

where the matrix VN has the eigenvectors of any symmetric tridiagonal Toeplitz
matrix of dimension N as columns. The entries of VN1

and VN2
are not de-

pendent on the entries of α1I − ∆tA1 or M2 + ∆tA2 due to their symmetry.
Moreover, the matrices Λ1 and Λ2 are diagonal matrices having the eigenvalues
of α1I − ∆tA1 or M2 + ∆tA2 as entries respectively. These are known and
given e.g. in [22, pp. 514-516]:

v1
ij =

1√∑N1

k=1 sin2
(

kπ
N1+1

) sin

(
ijπ

N1 + 1

)
for i, j = 1, ..., N1,

v2
ij =

1√∑N2

k=1 sin2
(

kπ
N2+1

) sin

(
ijπ

N2 + 1

)
for i, j = 1, ..., N2,

µ1,j =
1

∆x2
1

(
α1∆x2

1 + 2λ1∆t− 2λ1∆t cos

(
jπ

N1 + 1

))
for j = 1, ..., N1,

µ2,j =
1

3∆x2
2

(
2α2∆x2

2 + 6λ2∆t+ (α2∆x2
2 − 6λ2∆t) cos

(
jπ

N2 + 1

))
for j = 1, ..., N2.

(40)

The entries α1
N1N1

, α1
N1−1N1

and α2
11 of the matrices (α1I − ∆tA1)−1 and

(M2 + ∆tA2)−1, respectively, are now computed through their eigendecompo-
sition resulting in

α1
N1−1N1

=
∆x2

1s0∑N1

i=1 sin2(iπ∆x1)
, (41)

α1
N1N1

=
∆x2

1s1∑N1

i=1 sin2(iπ∆x1)
, (42)

α2
11 =

3∆x2
2s2∑N2

i=1 sin2(iπ∆x2)
, (43)

with

s0 =

N1∑
i=1

sin(iπ∆x1) sin(2iπ∆x1)

α1∆x2
1 + 2λ1∆t(1− cos(iπ∆x1))

, (44)
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s1 =

N1∑
i=1

sin2(iπ∆x1)

α1∆x2
1 + 2λ1∆t(1− cos(iπ∆x1))

, (45)

s2 =

N2∑
i=1

sin2(iπ∆x2)

2α2∆x2
2 + 6λ2∆t+ (α2∆x2

2 − 6λ2∆t) cos(iπ∆x2)
. (46)

Now, inserting (41), (42) and (43) into (36) and (37) we get for S(1) and
S(2):

S(1) =
3λ1∆t

2∆x2
1

− λ2
1∆t2

2∆x2
1

4s1 − s0∑N1

i=1 sin2(iπ∆x1)
, (47)

S(2) =

(
α2∆x2

2 + 3λ2∆t

3∆x2
2

)
− (α2∆x2

2 − 6λ2∆t)2

12∆x2
2

s2∑N2

i=1 sin2(iπ∆x2)
. (48)

With this we obtain an explicit formula for the spectral radius of the iteration
matrix Σ as a function of ∆x1, ∆x2 and ∆t:

ρ(Σ) = |Σ| = |S(2)−1
S(1)|

=

(
α2∆x2

2 + 3λ2∆t

3∆x2
2

− (α2∆x2
2 − 6λ2∆t)2

12∆x2
2

s2∑N2

i=1 sin2(iπ∆x2)

)−1

·

(
3λ1∆t

2∆x2
1

− λ2
1∆t2

2∆x2
1

4s1 − s0∑N1

i=1 sin2(iπ∆x1)

)
.

(49)

To simplify this, the finite sums
∑N1

i=1 sin2(iπ∆x1) and
∑N2

i=1 sin2(iπ∆x2)
can be computed. We first rewrite the sum of squared sinus terms into a sum of
cosinus terms using the identity sin2(x/2) = (1− cos(x))/2. Then, the resulting
sum can be converted into a geometric sum using Euler’s formula. We thus
obtain after some calculations:

N1∑
j=1

sin2(jπ∆x1) =
1−∆x1

2∆x1
− 1

2

N1∑
j=1

cos(2jπ∆x1) =
1

2∆x1
, (50)

N2∑
j=1

sin2(jπ∆x2) =
1

2∆x2
. (51)
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Inserting (50) and (51) into (49) we get after some manipulations

|Σ| = 3∆x2
2(3λ1∆t− 2λ2

1∆x1∆t2(4s1 − s0))

∆x2
1(2(α2∆x2

2 + 3λ2∆t)−∆x2(α2∆x2
2 − 6λ2∆t)2s2)

. (52)

We could not find a way of simplifying the finite sum (46) because ∆x2

depends on N2 (i.e., ∆x2 = 1/(N2 +1)). However, (52) is a computable formula
that gives exactly the convergence rates of the Dirichlet-Neumann iteration for
given ∆t, ∆xm, αm and λm, m = 1, 2.

We are now interested in the asymptotics of (52) for ∆t→ 0 and ∆x1 → 0
with ∆x2 = r ·∆x1 where r := ∆x2/∆x1 is a fixed aspect ratio. This is moti-
vated by the assumption that the resolution in the fluid in direction tangential
to the wall would be similar to the resolution in the structure. We obtain:

lim
∆t→0

|Σ| = 3∆x2
2 · 0

∆x2
1

(
2α2∆x2

2 − α2∆x3
2

∑N2

i=1
3 sin2(iπ∆x2)
2+cos(iπ∆x2)

) = 0. (53)

lim
∆x1→0

|Σ| = lim
∆x1→0

3r2(3λ1∆t− 2λ2
1∆x1∆t2(4s1 − s0))

2(α2r2∆x2
1 + 3λ2∆t)− r∆x1(α2r2∆x2

1 − 6λ2∆t)2s2

= lim
∆x1→0

9λ1r
2∆t− 6λ1r

2∆x1∆t
(∑N1

i=1
sin2(iπ∆x1)(2−cos(iπ∆x1))

1−cos(iπ∆x1)

)
6λ2∆t− 6λ2r∆t∆x1

(∑N2

i=1
sin2(iπr∆x1)

1−cos(iπr∆x1)

)
=
λ1

λ2
lim

∆x1→0

3r2 − 2r2∆x1

∑N1

i=1(1 + cos(iπ∆x1))(2− cos(iπ∆x1))

2− 2r∆x1

∑N2

i=1(1 + cos(iπr∆x1))

=
λ1

λ2
lim

∆x1→0

3r2 − 2r2∆x1

(∑N1

i=1 2 +
∑N1

i=1 cos(iπ∆x1)−
∑N1

i=1 cos2(iπ∆x1)
)

2− 2r∆x1

(∑N2

i=1 1 +
∑N2

i=1 cos(iπr∆x1)
) .

(54)

To simplify (54), it is well known that the finite sums
∑N1

i=1 cos(iπ∆x1),∑N2

i=1 cos(iπr∆x1) and
∑N1

i=1 cos2(iπ∆x1) can be computed by using Euler’s
formula to convert them into geometric sums. We thus obtain after some cal-
culations:

N2∑
j=1

cos(jπr∆x1) = Re

 N2∑
j=1

eijπr∆x1

 = Re

(
eiπr∆x1(1− eiN2πr∆x1)

1− eiπr∆x1

)
= 0.

(55)

In order to compute the third sum, we rewrite the sum of squared cosinus
terms into a sum of sinus terms using the identity cos2(x/2) = (1 + cos(x))/2
and the apply the same technique:
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N1∑
j=1

cos2(jπ∆x1) =
1−∆x1

2∆x1
+

1

2

N1∑
j=1

cos(2jπ∆x1) =
1− 2∆x1

2∆x1
. (56)

Inserting (55) and (56) into (54) we get

lim
∆x1→0

|Σ| = λ1

λ2
lim

∆x1→0

3r2 − 2r2∆x1

(
2(1−∆x1)

∆x1
− 1−2∆x1

2∆x1

)
2− 2r∆x1

(
1−r∆x1

r∆x1

)
=
λ1

λ2
lim

∆x1→0

2r2∆x1

2r∆x1
=
λ1

λ2
r =: δr.

(57)

From the result obtained in (53) we can conclude that the convergence rate
goes to zero when the time step decreases and therefore, the iteration will be
fast for ∆t small and can always be made to converge by decreasing ∆t. This is
consistent with the behavior of the cooling of a flat plat and the flanged shaft
presented earlier in figures 5a and 5b.

On the other hand, from the spatial asymptotics (57) we can observe that
strong jumps in the thermal conductivities of the materials placed in Ω1 and Ω2

will imply fast convergence. This is often the case when modelling thermal fluid
structure interaction, since fluids typically have lower thermal conductivities
than structures.

Finally, the aspect ratio r also influences the behavior of the fixed point
iteration, i.e, the rates will become smaller the higher the aspect ratio, e.g. the
higher the Reynolds number in the fluid. This phenomenon is not unknown for
PDE discretizations and is referred to as geometric stiffness. As is the case here,
refining the mesh to reduce the aspect ratio would lead to faster convergence of
the iterative method.

Before presenting numerical results we want to show the results obtained for
different space discretization combinations with the same constant mesh width
on both subdomains.

6 Extension of the Analysis

In this section we want to extend the results presented in the previous sec-
tion by reviewing similar analysis for other choices of space discretizations. In
particular, FEM-FEM coupling and 2D FVM-FEM with r = 1.

Firstly, when one uses a linear FEM discretization in 1D and the same mesh
width on both subdomains (i.e, r = 1) and applies the same analysis as in the
previous section, the corresponding limits for the spectral radius of the iteration
matrix Σ are given by [23, 25]:

lim
∆t→0

ρ(Σ) =
α1

α2
, (58)
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lim
∆x→0

ρ(Σ) =
λ1

λ2
. (59)

When we compare these with the asymptotics obtained with FVM-FEM
discretizations (53)-(57), we observe that while the spatial limit is the same,
the temporal limit does not match. This arises from differences in the matrix
S(1) in (32). In the FEM-FEM context, the matrices S(1) and S(2) lead to
the same expression with only different material coefficients (α1, α2, λ1, λ2).
Because of this, the limits of ρ(Σ) are quotients of those coefficients. However,
the situation is different in the FVM-FEM context. There, the matrix S(1) in
(34) is missing several mass matrices if we compare it with S(2) in (35). This
unsymmetry between S(1) and S(2) causes that the limit of ρ(Σ) when ∆t→ 0
is not balanced between the numerator and the denominator, resulting in 0.

This implies that opposed to the FVM-FEM case, where convergence can
always be achieved by decreasing the time step, that for an FEM-FEM coupling,
a situation can occur where α1/α2 > λ1/λ2 and therefore, a decrease in time
step can cause divergence. This is for example the case for an air-water coupling
[23].

Secondly, for an aspect ratio of r = 1, we were able to extend the 1D results
for both FVM-FEM and FEM-FEM to 2D in the following sense (see [5, 23]).
In 2D, the iteration matrix Σ is not easy to compute for several reasons. First
of all, the matrices M1 + ∆tA1 and M2 + ∆tA2 are sparse block tridiagonal
matrices, and consequently their inverses are not straight forward to compute.
Moreover, the diagonal blocks of the same matrices are tridiagonal but their
inverses are full matrices.

Due to these difficulties, we approximated the strictly diagonally dominant
matrices M1 + ∆tA1 and M2 + ∆tA2 by their diagonal. Thus, we obtained an
estimate of the spectral radius of the iteration matrix Σ. This estimator tends to
the exact same limits as for the 1D case for both combination of discretizations.

We did not find a way to further extend these results to the high aspect
ratio case. However, we will show now by numerical experiments that already
the 1D formula (52) is a good estimator for convergence rates in 2D.

7 Numerical Results

We now present numerical experiments designed to illustrate the validity of the
theoretical results of the previous sections. Firstly, we will confirm that the
theoretical formula |Σ| in (52) predicts the convergence rates in the 1D case.
Secondly, we will show the validity of (52) as an estimator for the rates in the
2D case, we will also show that the theoretical asymptotics deduced in (53) and
(57) match with the numerical experiments. Finally, we illustrate the validity
of (52) as an estimator for the non linear thermal FSI test cases introduced in
section 3.
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7.1 1D FVM-FEM Results

We first compare the semidiscrete estimator β in (18) with the discrete formula
|Σ| in 1D in (52) and experimental convergences rates. The latter are computed
with respect to a reference solution uref over the whole domain Ω.

Figure 9 shows a comparison between β and |Σ| for r = 1, ∆x = 1/20 and
variable ∆t. On the left we plot β, |Σ| and the experimental convergence rates
with ∆t/∆x2 � 1 and on the right we plot the same but with ∆t/∆x2 � 1.
As can be seen, the experimental convergence rate matches exactly with the
exact formula (52). Observe that β is almost constant and represents the lower
branch in figure 6. To arrive at the jump we would have to choose ∆t � 1.
We can conclude that the formulas for the convergence rates in 1D presented in
the previous section are minimally better than the semidiscrete one proposed
in [16] when ∆t/∆x2 � 1. In the, less relevant case, ∆t/∆x2 � 1 our formula
also predicts the rates accurately, while the semidiscrete estimator deviates.
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(a) ∆t/∆x2 � 1
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(b) ∆t/∆x2 � 1

Figure 9: Semidiscrete estimator β, exact rate Σ and numerical rates over ∆t
in 1D. D1 = 1, D2 = 0.5, λ1 = 0.3 and λ2 = 1, ∆x = 1/20. On the left:
∆t = 1e−2/50, 2 · 1e−2/50, ..., 50 · 1e−2/50. On the right: ∆t = 1e−2, 2 · 1e−
2, ..., 50 · 1e− 2.

We now want to illustrate how |Σ| in (52) gives the convergence rates and
tends to the limits computed previously in (53) and (57). To this end, we present
two real data examples. We consider here the thermal interaction between air
at 273K with steel at 900K and water at 283K with steel at 900K. Physical
properties of the materials and resulting asymptotics for these two cases are
shown in table 1 and 2 respectively.

Figures 10 and 11 show the convergence rates for the interactions between
air and steel and between water and steel, respectively. On the left we always
have fixed ∆x1 and r, but variable ∆t, whereas on the right we have fixed ∆t
and r, but varying ∆x1. Each plot includes graphs for two different values of
r. In figure 10 we choose r = 1 and r = 100 to illustrate the effect of a neutral
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Table 1: Physical properties of the materials. λ is the thermal conductivity, ρ
the density, cp the specific heat capacity and α = ρcp.

Material λ (W/mK) ρ (kg/m3) cp (J/kgK) α (J/K m3)

Air 0.0243 1.293 1005 1299.5
Water 0.58 999.7 4192.1 4.1908e6
Steel 48.9 7836 443 3471348

Table 2: Temporal and spatial asymptotics of (52) for the thermal interaction
of air at 273K with steel at 900K, water at 283K with steel and air with water.

Case ∆t→ 0 ∆x→ 0

Air-Steel 0 4.9693e-4 · r
Water-Steel 0 0.0119 · r
Air-Water 0 0.0419 · r

or a high aspect ratio. In figure 11 we use r = 0.01 and r = 1 to illustrate how
the rates are affected by a small or a neutral aspect ratio.

Again, |Σ| gives the exact convergence rates. Moreover, one observes that
the rates in 10a and 11a tend to 0 as predicted in (53) and in 10b and 11b to δr as
predicted in (57). Furthermore, there is a roughly proportional relation between
the convergence rate and the aspect ratio. For coupling with compressible flows,
we typically have a high aspect ratio and therefore, the Dirichlet-Neumann
iteration will be slowed down. Furthermore, this shows that it is very important
to take the aspect ratio into account to make a reasonable prediction of the
convergence rate at all.

7.2 2D FVM-FEM Results

We now want to demonstrate that the 1D formula (52) is a good estimator
for the convergence rates in 2D. Thus, we now consider a 2D version of (16)
consisting of two coupled linear heat equations on two identical unit squares,
e.g, Ω1 = [−1, 0] × [0, 1] and Ω2 = [0, 1] × [0, 1]. We use a non equidistant
cartesian grid with aspect ratio r on Ω1 and an equidistant grid on Ω2. In order
to use (52) as an estimator we decided to take the equidistant mesh width on
Ω2 as ∆x2 and the mesh width in x-direction on Ω1 as ∆x1.

As before, we present two real data examples described in table 1 and 2,
namely the thermal interaction between air at 273K with steel at 900K and air
at 273K with water at 283K.

Figures 12 and 13 show the convergence rates for the interactions between
air and steel and between air and water in 2D respectively. On the left we
always plot the rates for fixed ∆x1 and r with variable ∆t. On the right we
plot the behaviour of the rates for fixed ∆t and r and varying ∆x1. As before,
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(a) ∆t = 40/39, 2 · 40/39, ..., 39 · 40/39,
∆x1 = 1/1100 and r = 100 (top curves) or
r = 1 (bottom curves).
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(b) ∆x1 = 1/3, 1/4, ..., 1/50, ∆t = 10 and r =
100 (top curves) or r = 1 (bottom curves).

Figure 10: Air-Steel thermal interaction with respect ∆t on the left and ∆x1

on the right in 1D.
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(a) ∆t = 1/39, 2 · 1/39, ..., 39 · 1/39, ∆x1 =
1/1100 and r = 1 (top curves) or r = 0.01
(bottom curves).
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(b) ∆x1 = 1/3, 1/4, ..., 1/50, ∆t = 10 and r =
1 (top curves) or r = 0.01 (bottom curves).

Figure 11: Water-Steel thermal interaction with respect ∆t on the left and ∆x1

on the right in 1D.

notice that each plot includes two cases for two different r values. In figure 12
we choose r = 1 and r = 100 as in the 1D case (see figure 10) and in figure 13
we use r = 1 and r = 1000 to illustrate the effect of a neutral or a high aspect
ratio. One observes that the convergence rates predicted by the one-dimensional
formula (52) are almost exactly the ones observed in 2D. Thus, the 1D model
problem case gives a very good estimator for the 2D model problem.
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(b) ∆x1 = 1/3, 1/4, ..., 1/50, ∆t = 10 and r =
100 (top curves) or r = 1 (bottom curves).

Figure 12: 2D Air-Steel thermal interaction. Observed and estimated conver-
gence rates over ∆t (left) and ∆x1 (right).
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(a) ∆t = 40/39, 2 · 40/39, ..., 39 · 40/39,
∆x1 = 1/1100 and r = 1000 (top curves) or
r = 1 (bottom curves).
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(b) ∆x1 = 1/3, 1/4, ..., 1/35, ∆t = 10 and r =
1000 (top curves) or r = 1 (bottom curves).

Figure 13: 2D Air-Water thermal interaction. Observed and estimated conver-
gence rates over ∆t (left) and ∆x1 (right).

7.3 Thermal FSI Test Cases

Finally, we want to relate the results for the two nonlinear applications (the two
cooling systems introduced in sections 3.1 and 3.2: the cooling of a flat plate and
of a flanged shaft) to our analysis. Figure 14a shows the convergence behaviour
for the flat plate and 14b for the flanged shaft. We plot the experimental
convergence rates, the one-dimensional formula (52), the semidiscrete estimator
(20) and the spatial limit δr specified in (57).

In order to apply the 1D formula (52) here, some assumptions need to be
taken, since we partly have unstructured meshes and nonuniform temperatures.
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Thus, we assume air at 273K on the first subdomain with steel at 900K on the
second subdomain for the cooling of a flat plate and air at 273K with steel at
1145K for the cooling of a flanged shaft. The density, heat capacity and heat
conductivity of air and the density of steel are given in table 1. In addition, the
heat conductivities and heat capacities of steel at 900K and 1145K are obtained
from the nonlinear coefficient functions (3) and (4) by inserting Θ = 900K or
Θ = 1145K respectively. This gives λ = 39.82 and cp = 1.3684e3 for steel at
900K and λ = 39.8 and cp = 572.75 for steel at 1145K.

Furthermore, for the cooling of a flat plate, we take ∆x1 = 9.3736e − 5
which is the width of the fluid cells touching the interface in the y-direction
and ∆x2 = 1.6667 which is width of the structure cells in both directions.
Thus, we have an aspect ratio of r = 1.7780e4. On the other hand, choosing
∆x1 and ∆x2 for the cooling of a flanged shaft is more difficult due to the
unstructured grids. In order to get an upper bound for the aspect ratio r, we
choose ∆x1 = 1.6538e − 4 which is the minimum width of all the fluid cells
touching the interface in direction normal to the wall and ∆x2 = 1.1364 which
is the maximum width of all the structure cells touching the interface tangential
to the wall. This gives r = 6.8713e3.
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(a) Test case 1: Flow over a plate
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(b) Test case 2: Cooling of a flanged shaft

Figure 14: Convergence behavior of the cooling systems with respect to ∆t.

From figure 14a one observes with these choices, (52) predicts the rates
accurately for the cooling of a flat plate. Note that the semidiscrete estimator β
does not show any change with ∆t. Remember that β is almost always constant,
except for a short dynamic transition between (λ1/λ2)

√
D2/D1 and λ1/λ2 as

shown in figure 6. Here, we would have to choose a ∆t larger than 10E6 to see
the transition.

Finally, in figure 14b one can see that (52) predicts the convergence rates for
the cooling of a flanged shaft to be only slightly smaller compared to the actual
performance. This could be due to either the unstructured grids used or to the
nonconstant temperature in the structure, which varies from room temperature
to 1145K. Again, β is almost constant.

26



8 Summary and Conclusions

We considered the Dirichlet-Neumann iteration for thermal FSI and studied the
convergence rates. To this end, we considered the coupling of two heat equations
on two identical domains. We assumed structured grids on both subdomains,
but allowed for high aspect ratio grids in one domain. An exact formula for the
convergence rates was derived for the 1D case. Furthermore, we determined the
limits of the convergence rates when approaching the continuous case either in
space (rλ1/λ2) or time (0). This was confirmed by numerical results, where we
also demonstrated that the 1D case gives excellent estimates for the 2D case.
In addition, numerical experiments show that the linear analysis is relevant for
nonlinear thermal FSI problems.

All in all, strong jumps in the coefficients of the coupled PDEs will imply
fast convergence. In the domain decomposition context, the coupling will be
slow because the material coefficients are continuous over all the subdomains,
i.e, λ1 = λ2, and therefore δ1 ∼ 1. For coupling of structures and compressible
flows, the aspect ratio in the structure has to be taken into account, since
the convergence rate is proportional to it. For the nonlinear cooling problems
considered here, the convergence rate was still around 0.1 for large ∆t. When
encountering divergence anyhow, this can be solved by reducing the time step.
Note that in a time adaptive setting, it is standard to allow for a feedback loop
between the nonlinear solver and the time stepper.
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