237 research outputs found

    Superheavy dark matter and ultrahigh energy cosmic rays

    Full text link
    The phase of inflationary expansion in the early universe produces superheavy relics in a mass window between 10^{12} GeV and 10^{14} GeV. Decay or annihilation of these superheavy relics can explain the observed ultrahigh energy cosmic rays beyond the Greisen-Zatsepin-Kuzmin cutoff. We emphasize that the pattern of cosmic ray arrival directions with energies beyond 20 EeV will decide between the different proposals for the origin of ultrahigh energy cosmic rays.Comment: Based on an invited talk given by RD at Theory Canada 1, Vancouver, June 2-5, 200

    Rapid Microwave Preparation of Thermoelectric TiNiSn and TiCoSb Half-Heusler Compounds

    Get PDF
    The 18-electron ternary intermetallic systems TiNiSn and TiCoSb are promising for applications as high-temperature thermoelectrics and comprise earth-abundant, and relatively nontoxic elements. Heusler and half-Heusler compounds are usually prepared by conventional solid state methods involving arc-melting and annealing at high temperatures for an extended period of time. Here, we report an energy-saving preparation route using a domestic microwave oven, reducing the reaction time significantly from more than a week to one minute. A microwave susceptor material rapidly heats the elemental starting materials inside an evacuated quartz tube resulting in near single phase compounds. The initial preparation is followed by a densification step involving hot-pressing, which reduces the amount of secondary phases, as verified by synchrotron X-ray diffraction, leading to the desired half-Heusler compounds, demonstrating that hot-pressing should be treated as part of the preparative process. For TiNiSn, high thermoelectric power factors of 2 mW/mK^2 at temperatures in the 700 to 800 K range, and zT values of around 0.4 are found, with the microwave-prepared sample displaying somewhat superior properties to conventionally prepared half-Heuslers due to lower thermal conductivity. The TiCoSb sample shows a lower thermoelectric figure of merit when prepared using microwave methods because of a metallic second phase

    On The Injection Spectrum of Ultrahigh Energy Cosmic Rays in the Top-Down Scenario

    Full text link
    We analyze the uncertainties involved in obtaining the injection spectra of UHECR particles in the top-down scenario of their origin. We show that the DGLAP Q2Q^2 evolution of fragmentation functions (FF) to Q=MXQ=M_X (mass of the X particle) from their initial values at low QQ is subject to considerable uncertainties. We therefore argue that, for x\lsim 0.1 (the xx region of interest for most large MXM_X values of interest, x≡2E/MXx\equiv 2E/M_X being the scaled energy variable), the FF obtained from DGLAP evolution is no more reliable than that provided, for example, by a simple Gaussian form (in the variable ln⁥(1/x)\ln(1/x)) obtained under the Modified Leading Log Approximation (MLLA). Additionally, we find that for x\gsim0.1, the evolution in Q2Q^2 of the singlet FF, which determines the injection spectrum, is ``minimal'' -- the singlet FF changes by barely a factor of 2 after evolving it over ∌\sim 14 orders of magnitude in Q∌MXQ\sim M_X. We, therefore, argue that as long as the measurement of the UHECR spectrum above \sim10^{20}\ev is going to remain uncertain by a factor of 2 or larger, it is good enough for most practical purposes to directly use any one of the available initial parametrisations of the FFs in the xx region x\gsim0.1 based on low energy data even without evolving them to the requisite Q2Q^2 value.Comment: Minor changes, added a reference, version to appear in Phys. Rev.

    Status of Schottky Diagnostics in the ANKA Storage Ring

    Get PDF
    The status of longitudinal and transverse Schottky observation systems for the synchrotron light source ANKA is presented. ANKA regularly operates in a dedicated low alpha mode with short bunches for the generation of coherent THz radiation. The Schottky measurement results are shown and compared with theoretical predictions for the regular as well as the different stages of the low alpha mode of operation. Special care had to be taken to control and mitigate the impact from strong coherent lines of the short bunches on the signal processing chain. The system setup is shown, expected and unexpected observations as well as applications are discussed

    Measuring High Energy Neutrino-Nucleon Cross Sections With Future Neutrino Telescopes

    Get PDF
    Next generation kilometer-scale neutrino telescopes, such as ICECUBE, can test standard model predictions for neutrino-nucleon cross sections at energies well beyond the reach of collider experiments. At energies near a PeV and higher, the Earth becomes opaque to neutrinos. At these energies, the ratio of upgoing and downgoing events can be used to measure the total neutrino-nucleon cross section given the presence of an adequate high energy neutrino flux.Comment: 4 pages, 5 figure

    Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis

    Get PDF
    Acknowledgments We thank the European Research Council (ERC) (project GA 335910 VEWA) and Natural Environment Research Council (NERC) (project NE/K000268/1) for funding and the Airborne Research and Survey Facility for conducting the aerial survey. The data used are available from the authors. In addition, we would like to thank the additional support from Audrey Innes for the sample analysis and Maria Blumstock and Mike Kennedy for assisting with field work.Peer reviewedPublisher PD

    Air fluorescence measurements in the spectral range 300-420 nm using a 28.5 GeV electron beam

    Full text link
    Measurements are reported of the yield and spectrum of fluorescence, excited by a 28.5 GeV electron beam, in air at a range of pressures of interest to ultra-high energy cosmic ray detectors. The wavelength range was 300 - 420 nm. System calibration has been performed using Rayleigh scattering of a nitrogen laser beam. In atmospheric pressure dry air at 304 K the yield is 20.8 +/- 1.6 photons per MeV.Comment: 29 pages, 10 figures. Submitted to Astroparticle Physic

    High Energy Neutrinos From Superheavy Dark Matter Annihilation

    Get PDF
    Superheavy (M>1010M>10^{10} GeV) particles produced during inflation may be the dark matter, independent of their interaction strength. Strongly interacting superheavy particles will be captured by the sun, and their annihilation in the center of the sun will produce a flux of energetic neutrinos that should be detectable by neutrino telescopes. Depending on the particle mass, event rates in a cubic-kilometer detector range from several per hour to several per year. The signature of the process is a predominance of tau neutrinos, with a relatively flat energy spectrum of events ranging from 50 GeV to many TeV, and with the mean energy of detected tau neutrinos about 3 TeV.Comment: 24 pages, 7 figure

    Observation of Electron Clouds in the ANKA Undulator by Means of the Microwave Transmission Method

    Get PDF
    A superconducting undulator is installed in the ANKA electron storage ring. Electron clouds could potentially contribute to the heat load of this device. A microwave transmission type electron cloud diagnostic has been installed for the undulator section of the ANKA machine. We present the system layout with particular emphasis on the electron machine aspects. Hardware transfer function results and e-cloud data for different machine settings are discussed. Special care has been taken for front end filter design both on the microwave injection and pick-up side
    • 

    corecore