426 research outputs found

    Henry, Himself

    Get PDF

    Subjective and metrical depth of the suborbital fossa

    Get PDF
    Thesis (M.A.)--University of Kansas, Sociology and Anthropology, 1963

    Evidence against a strong thermal inversion in HD 209458 b from high-dispersion spectroscopy

    Get PDF
    Broadband secondary-eclipse measurements of hot Jupiters have indicated the existence of atmospheric thermal inversions, but their presence is difficult to determine from broadband measurements because of degeneracies between molecular abundances and temperature structure. We apply high-resolution (R = 100 000) infrared spectroscopy to probe the temperature-pressure profile of HD 209458 b. This bright, transiting hot-Jupiter has long been considered the gold standard for a hot Jupiter with an inversion layer, but this has been challenged in recent publications. We observed the thermal dayside emission of HD 209458 b with CRIRES / VLT during three nights, targeting the carbon monoxide band at 2.3 microns. Thermal inversions give rise to emission features, which means that detecting emission lines in the planetary spectrum, as opposed to absorption lines, would be direct evidence of a region in which the temperature increases with altitude. We do not detect any significant absorption or emission of CO in the dayside spectrum of HD 209458 b, although cross-correlation with template spectra either with CO absorption lines or with weak emission at the core of the lines show a low-significance correlation signal with a signal-to-noise ratio of 3 - 3.5. Models with strong CO emission lines show a weak anti-correlation with similar or lower significance levels. Furthermore, we found no evidence of absorption or emission from H2O at these wavelengths. The non-detection of CO in the dayside spectrum of HD 209458 b is interesting in light of a previous CO detection in the transmission spectrum. That there is no signal indicates that HD 209458 b either has a nearly isothermal atmosphere or that the signal is heavily muted. Assuming a clear atmosphere, we can rule out a full-disc dayside inversion layer in the pressure range 1 bar to 1 mbar.Comment: 11 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Finding extraterrestrial life using ground-based high-resolution spectroscopy

    Get PDF
    Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earth's atmosphere. The cancellation of both the Terrestrial Planet Finder and Darwin missions means that it is unlikely that a dedicated space telescope to search for biomarker gases in exoplanet atmospheres will be launched within the next 25 years. Here we show that ground-based telescopes provide a strong alternative for finding biomarkers in exoplanet atmospheres through transit observations. Recent results on hot Jupiters show the enormous potential of high-dispersion spectroscopy to separate the extraterrestrial and telluric signals making use of the Doppler shift of the planet. The transmission signal of oxygen from an Earth-twin orbiting a small red dwarf star is only a factor 3 smaller than that of carbon monoxide recently detected in the hot Jupiter tau Bootis b, albeit such a star will be orders of magnitude fainter. We show that if Earth-like planets are common, the planned extremely large telescopes can detect oxygen within a few dozen transits. Ultimately, large arrays of dedicated flux collector telescopes equipped with high-dispersion spectrographs can provide the large collecting area needed to perform a statistical study of life-bearing planets in the solar neighborhood.Comment: 22 pages, 3 figures; published in Ap

    Low-mass eclipsing binaries in the WFCAM Transit Survey : The persistence of the M-dwarf radius inflation problem

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We present the characterization of five new short-period low-mass eclipsing binaries (LMEBs) from the WFCAM Transit Survey. The analysis was performed by using the photometric WFCAM J-mag data and additional low- and intermediate-resolution spectroscopic data to obtain both orbital and physical properties of the studied sample. The light curves and the measured radial velocity curves were modelled simultaneously with the JKTEBOP code, with Markov chain MonteCarlo simulations for the error estimates. The best-model fit have revealed that the investigated detached binaries are in very close orbits, with orbital separations of 2.9 ≤ a ≤ 6.7R⊙ and short periods of 0.59 ≤ Porb ≤ 1.72 d, approximately. We have derived stellar masses between 0.24 and 0.72M⊙ and radii ranging from 0.42 to 0.67 R⊙. The great majority of the LMEBs in our sample has an estimated radius far from the predicted values according to evolutionary models. The components with derived masses of M < 0.6M⊙ present a radius inflation of ~9 per cent or more. This general behaviour follows the trend of inflation for partially radiative stars proposed previously. These systems add to the increasing sample of low-mass stellar radii that are not well-reproduced by stellarmodels. They further highlight the need to understand the magnetic activity and physical state of small stars. Missions like TESS will provide many such systems to perform high-precision radius measurements to tightly constrain low-mass stellar evolution models.Peer reviewe

    Numerical predictions of turbulent underexpanded sonic jets using a pressure-based methodology

    Get PDF
    The objective of this work is to model underexpanded turbulent sonic jets. A pressure-based computational fluid dynamics methodology has been employed, incorporating extensions to handle high speed flows. A standard two-equation turbulence model is used, with an optional compressibility correction. Comparison with experimental jet centre-line Mach number showed the correct shock cell wavelength but a too rapid decay. The compressibility correction had no effect on the shock cell decay but increased the potential core length to give better agreement with experiment. Calculations for nozzle pressure ratios up to 30 showed the variation of Mach disc location in good agreement with experiment. For nozzle pressure ratios above 6, unsteady solutions were observed, emanating from the intersection of the Mach disc with the shear layer. Experimental work has identified similar large-scale instabilities; the peak mode of the prediction had a Strouhal number of 0.16, close to experimental values

    Book Reviews

    Get PDF
    Law and Politics in the Supreme Court By Martin Shapiro New York: Free Press of Glencoe, 1964. Pp. 333. $6.95. reviewer: Robert H. Birkby ====================== Lives of the Lord Chancellors, 1885-1940 By R. F. V. Heuston Oxford: Clarendon Press, 1964, Pp. xxiii, 632. reviewer: Elliot E. Cheatha

    Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b

    Get PDF
    (Abridged) In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmospheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. Here we present the analysis of spectra of the system at 2.3 micron, obtained at a resolution of R~100,000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet's thermal spectrum and the radial component of its orbital velocity. We detect molecular absorption from carbon monoxide and water vapor with a combined S/N of 6.3, at a projected planet orbital velocity of K_P = (142.8 +- 3.4) km/s, which translates into a planet mass of M_P = (0.98 +- 0.04) Jupiter masses, and an orbital inclination of i = (67.7 +- 4.3) degrees, using the known stellar radial velocity and stellar mass. The detection of absorption features rather than emission means that, despite being highly irradiated, HD 179949 b does not have an atmospheric temperature inversion in the probed range of pressures and temperatures. Since the host star is active (R_HK > -4.9), this is in line with the hypothesis that stellar activity damps the onset of thermal inversion layers owing to UV flux photo-dissociating high-altitude, optical absorbers. Finally, our analysis favors an oxygen-rich atmosphere for HD 179949 b, although a carbon-rich planet cannot be statistically ruled out based on these data alone.Comment: 10 pages, 9 figures. Accepted for publication in Astronomy and Astrophysic

    Detection of the secondary eclipse of Qatar-1b in the Ks band

    Full text link
    Qatar-1b is a close-orbiting hot Jupiter (Rp1.18R_p\simeq 1.18 RJR_J, Mp1.33M_p\simeq 1.33 MJM_J) around a metal-rich K-dwarf, with orbital separation and period of 0.023 AU and 1.42 days. We have observed the secondary eclipse of this exoplanet in the Ks band with the objective of deriving a brightness temperature for the planet and providing further constraints to the orbital configuration of the system. We obtained near-infrared photometric data from the ground by using the OMEGA2000 instrument at the 3.5 m telescope at Calar Alto (Spain) in staring mode, with the telescope defocused. We have used principal component analysis (PCA) to identify correlated systematic trends in the data. A Markov chain Monte Carlo analysis was performed to model the correlated systematics and fit for the secondary eclipse of Qatar-1b using a previously developed occultation model. We adopted the prayer bead method to assess the effect of red noise on the derived parameters. We measured a secondary eclipse depth of 0.196%0.051%+0.071%0.196\%^{+0.071\%}_{-0.051\%}, which indicates a brightness temperature in the Ks band for the planet of 1885168+2121885^{+212}_{-168} K. We also measured a small deviation in the central phase of the secondary eclipse of 0.00790.0043+0.0162-0.0079^{+0.0162}_{-0.0043}, which leads to a value for ecosωe\cos{\omega} of 0.01230.0067+0.0252-0.0123^{+0.0252}_{-0.0067}. However, this last result needs to be confirmed with more data.Comment: 6 pages, 6 figures, accepted for publication in A&
    corecore