48 research outputs found
Surveillance biopsies in children post-kidney transplant
Surveillance biopsies are increasingly used in the post-transplant monitoring of pediatric renal allograft recipients. The main justification for this procedure is to diagnose early and presumably modifiable acute and chronic renal allograft injury. Pediatric recipients are theoretically at increased risk for subclinical renal allograft injury due to their relatively large adult-sized kidneys and their higher degree of immunological responsiveness. The safety profile of this procedure has been well investigated. Patient morbidity is low, with macroscopic hematuria being the most common adverse event. No patient deaths have been attributed to this procedure. Longitudinal surveillance biopsy studies have revealed a substantial burden of subclinical immunological and non-immunological injury, including acute cellular rejection, interstitial fibrosis and tubular atrophy, microvascular lesions and transplant glomerulopathy. The main impediment to the implementation of surveillance biopsies as the standard of care is the lack of demonstrable benefit of early histological detection on long-term outcome. The considerable debate surrounding this issue highlights the need for multicenter, prospective, and randomized studies
Association analysis identifies ZNF750 regulatory variants in psoriasis
<p>Abstract</p> <p>Background</p> <p>Mutations in the <it>ZNF750 </it>promoter and coding regions have been previously associated with Mendelian forms of psoriasis and psoriasiform dermatitis. <it>ZNF750 </it>encodes a putative zinc finger transcription factor that is highly expressed in keratinocytes and represents a candidate psoriasis gene.</p> <p>Methods</p> <p>We examined whether <it>ZNF750 </it>variants were associated with psoriasis in a large case-control population. We sequenced the promoter and exon regions of <it>ZNF750 </it>in 716 Caucasian psoriasis cases and 397 Caucasian controls.</p> <p>Results</p> <p>We identified a total of 47 variants, including 38 rare variants of which 35 were novel. Association testing identified two <it>ZNF750 </it>haplotypes associated with psoriasis (p < 0.05). We also identified an excess of rare promoter and 5'untranslated region (UTR) variants in psoriasis cases compared to controls (p = 0.041), whereas there was no significant difference in the number of rare coding and rare 3' UTR variants. Using a promoter functional assay in stimulated human primary keratinocytes, we showed that four <it>ZNF750 </it>promoter and 5' UTR variants displayed a 35-55% reduction of <it>ZNF750 </it>promoter activity, consistent with the promoter activity reduction seen in a Mendelian psoriasis family with a <it>ZNF750 </it>promoter variant. However, the rare promoter and 5' UTR variants identified in this study did not strictly segregate with the psoriasis phenotype within families.</p> <p>Conclusions</p> <p>Two haplotypes of <it>ZNF750 </it>and rare 5' regulatory variants of <it>ZNF750 </it>were found to be associated with psoriasis. These rare 5' regulatory variants, though not causal, might serve as a genetic modifier of psoriasis.</p
Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments
BACKGROUND: Insulin-like growth factor-I (IGF-I) plays a crucial role in wound healing and tissue repair. We tested the hypotheses that systemic administration of IGF-I, or growth hormone (GH), or both (GH+IGF-I) would improve healing in collagenous connective tissue, such as ligament. These hypotheses were examined in rats that were allowed unrestricted activity after injury and in animals that were subjected to hindlimb disuse. Male rats were assigned to three groups: ambulatory sham-control, ambulatory-healing, and hindlimb unloaded-healing. Ambulatory and hindlimb unloaded animals underwent surgical disruption of their knee medial collateral ligaments (MCLs), while sham surgeries were performed on control animals. Healing animals subcutaneously received systemic doses of either saline, GH, IGF-I, or GH+IGF-I. After 3 weeks, mechanical properties, cell and matrix morphology, and biochemical composition were examined in control and healing ligaments. RESULTS: Tissues from ambulatory animals receiving only saline had significantly greater strength than tissue from saline receiving hindlimb unloaded animals. Addition of IGF-I significantly improved maximum force and ultimate stress in tissues from both ambulatory and hindlimb unloaded animals with significant increases in matrix organization and type-I collagen expression. Addition of GH alone did not have a significant effect on either group, while addition of GH+IGF-I significantly improved force, stress, and modulus values in MCLs from hindlimb unloaded animals. Force, stress, and modulus values in tissues from hindlimb unloaded animals receiving IGF-I or GH+IGF-I exceeded (or were equivalent to) values in tissues from ambulatory animals receiving only saline with greatly improved structural organization and significantly increased type-I collagen expression. Furthermore, levels of IGF-receptor were significantly increased in tissues from hindlimb unloaded animals treated with IGF-I. CONCLUSION: These results support two of our hypotheses that systemic administration of IGF-I or GH+IGF-I improve healing in collagenous tissue. Systemic administration of IGF-I improves healing in collagenous extracellular matrices from loaded and unloaded tissues. Growth hormone alone did not result in any significant improvement contrary to our hypothesis, while GH + IGF-I produced remarkable improvement in hindlimb unloaded animals
A study on trypsin, Aspergillus flavus and Bacillus sp. protease inhibitory activity in Cassia tora (L.) syn Senna tora (L.) Roxb. seed extract
<p>Abstract</p> <p>Background</p> <p>Proteases play an important role in virulence of many human, plant and insect pathogens. The proteinaceous protease inhibitors of plant origin have been reported widely from many plant species. The inhibitors may potentially be used for multiple therapeutic applications in viral, bacterial, fungal diseases and physiological disorders. In traditional Indian medicine system, <it>Cassia tora </it>(<it>Senna tora</it>) is reportedly effective in treatment of skin and gastrointestinal disorders. The present study explores the protease inhibitory activity of the above plant seeds against trypsin, <it>Aspergillus flavus </it>and <it>Bacillus </it>sp. proteases.</p> <p>Methods</p> <p>The crushed seeds of <it>Cassia tora </it>were washed thoroughly with acetone and hexane for depigmentation and defatting. The proteins were fractionated by ammonium sulphate (0-30, 30-60, 60-90%) followed by dialysis and size exclusion chromatography (SEC). The inhibitory potential of crude seed extract and most active dialyzed fraction against trypsin and proteases was established by spot test using unprocessed x-ray film and casein digestion methods, respectively. Electrophoretic analysis of most active fraction (30-60%) and SEC elutes were carried employing Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Gelatin SDS-PAGE. Inhibition of fungal spore germination was studied in the presence of dialyzed active inhibitor fraction. Standard deviation (SD) and ANOVA were employed as statistical tools.</p> <p>Results</p> <p>The crude seeds' extract displayed strong antitryptic, bacterial and fungal protease inhibitory activity on x-ray film. The seed protein fraction 30-60% was found most active for trypsin inhibition in caseinolytic assay (P < 0.001). The inhibition of caseinolytic activity of the proteases increased with increasing ratio of seed extract. The residual activity of trypsin, <it>Aspergillus flavus </it>and <it>Bacillus </it>sp. proteases remained only 4, 7 and 3.1%, respectively when proteases were incubated with 3 mg ml<sup>-1 </sup>seed protein extract for 60 min. The inhibitory activity was evident in gelatin SDS-PAGE where a major band (~17-19 kD) of protease inhibitor (PI) was detected in dialyzed and SEC elute. The conidial germination of <it>Aspergillus flavus </it>was moderately inhibited (30%) by the dialyzed seed extract.</p> <p>Conclusions</p> <p><it>Cassia tora </it>seed extract has strong protease inhibitory activity against trypsin, <it>Aspergillus flavus </it>and <it>Bacillus </it>sp. proteases. The inhibitor in <it>Cassia tora </it>may attenuate microbial proteases and also might be used as phytoprotecting agent.</p
Chronic allograft nephropathy
Chronic allograft nephropathy (CAN) is the leading cause of renal allograft loss in paediatric renal transplant recipients. CAN is the result of immunological and nonimmunological injury, including acute rejection episodes, hypoperfusion, ischaemia reperfusion, calcineurin toxicity, infection and recurrent disease. The development of CAN is often insidious and may be preceded by subclinical rejection in a well-functioning allograft. Classification of CAN is histological using the Banff classification of renal allograft pathology with classic findings of interstitial fibrosis, tubular atrophy, glomerulosclerosis, fibrointimal hyperplasia and arteriolar hyalinosis. Although improvement in immunosuppression has led to greater 1-year graft survival rates, chronic graft loss remains relatively unchanged and opportunistic infectious complications remain a problem. Protocol biopsy monitoring is not current practice in paediatric transplantation for CAN monitoring but may have a place if new treatment options become available. Newer immunosuppression regimens, closer monitoring of the renal allograft and management of subclinical rejection may lead to reduced immune injury leading to CAN in the paediatric population but must be weighed against the risk of increased immunosuppression and calcineurin inhibitor nephrotoxicity
Gata4 Is Required for Formation of the Genital Ridge in Mice
In mammals, both testis and ovary arise from a sexually undifferentiated precursor, the genital ridge, which first appears during mid-gestation as a thickening of the coelomic epithelium on the ventromedial surface of the mesonephros. At least four genes (Lhx9, Sf1, Wt1, and Emx2) have been demonstrated to be required for subsequent growth and maintenance of the genital ridge. However, no gene has been shown to be required for the initial thickening of the coelomic epithelium during genital ridge formation. We report that the transcription factor GATA4 is expressed in the coelomic epithelium of the genital ridge, progressing in an anterior-to-posterior (A-P) direction, immediately preceding an A-P wave of epithelial thickening. Mouse embryos conditionally deficient in Gata4 show no signs of gonadal initiation, as their coelomic epithelium remains a morphologically undifferentiated monolayer. The failure of genital ridge formation in Gata4-deficient embryos is corroborated by the absence of the early gonadal markers LHX9 and SF1. Our data indicate that GATA4 is required to initiate formation of the genital ridge in both XX and XY fetuses, prior to its previously reported role in testicular differentiation of the XY gonadHoward Hughes Medical Institut
Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling
<p>Abstract</p> <p>Background</p> <p>Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing) and mapped using family-based indels/SNPs in rainbow trout (RT)(<it>Oncorhynchus mykiss</it>), Arctic charr (AC)(<it>Salvelinus alpinus</it>), and Atlantic salmon (AS)(<it>Salmo salar</it>) mapping panels.</p> <p>Results</p> <p>Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL) for life history and growth traits (i.e., reproduction and cell cycling). Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh), regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2), regulating cell cycling, are contained within these syntenic blocks.</p> <p>Conclusions</p> <p>Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs) are located in other life-history QTL regions within salmonids suggesting that at least in part, trans-regulation of these QTL regions may also occur via Clock expression.</p