8 research outputs found

    Particle acceleration in three-dimensional tearing configurations

    Get PDF
    In three-dimensional electromagnetic configurations that result from unstable resistive tearing modes particles can efficiently be accelerated to relativistic energies. To prove this resistive magnetohydrodynamic simulations are used as input configurations for successive test particle simulations. The simulations show the capability of three-dimensional non-linearly evolved tearing modes to accelerate particles perpendicular to the plane of the reconnecting magnetic field components. The simulations differ considerably from analytical approaches by involving a realistic three-dimensional electric field with a non-homogenous component parallel to the current direction. The resulting particle spectra exhibit strong pitch-angle anisotropies. Typically, about 5-8 % of an initially Maxwellian distribution is accelerated to the maximum energy levels given by the macroscopic generalized electric potential structure. Results are shown for both, non-relativistic particle acceleration that is of interest, e.g., in the context of auroral arcs and solar flares, and relativistic particle energization that is relevant, e.g., in the context of active galactic nuclei.Comment: Physics of Plasmas, in prin

    Non-thermal processes in cosmological simulations

    Get PDF
    Non-thermal components are key ingredients for understanding clusters of galaxies. In the hierarchical model of structure formation, shocks and large-scale turbulence are unavoidable in the cluster formation processes. Understanding the amplification and evolution of the magnetic field in galaxy clusters is necessary for modelling both the heat transport and the dissipative processes in the hot intra-cluster plasma. The acceleration, transport and interactions of non-thermal energetic particles are essential for modelling the observed emissions. Therefore, the inclusion of the non-thermal components will be mandatory for simulating accurately the global dynamical processes in clusters. In this review, we summarise the results obtained with the simulations of the formation of galaxy clusters which address the issues of shocks, magnetic field, cosmic ray particles and turbulence.Comment: 27 pages, 16 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 15; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
    corecore