67 research outputs found

    Effect of Cobalt–Chromium–Molybdenum implant surface modifications on biofilm development of S. aureus and S. epidermidis

    Get PDF
    Periprosthetic infections are an eminent factor in patient care and also having significant economic implications. The number of biofilm-infection related replacement surgeries is increasing and will continue to do so in the following decades. To reduce both the health burden of the patients and the costs to the healthcare sector, new solutions for implant materials resistant to such infections are necessary. This study researches different surface modifications of cobalt–chromium–molybdenum (CoCrMo) based implant materials and their influence on the development of biofilms. Three smooth surfaces (CoCrMo, CoCrMo TiN, and CoCrMo polished) and three rough surfaces (CoCrMo porous coated, CoCrMo cpTi, and CoCrMo TCP) are compared. The most common infectious agents in periprosthetic infections are Staphylococcus aureus and Coagulase-negative staphylococci (e.g., Staphylococcus epidermidis), therefore strains of these two species have been chosen as model organisms. Biofilms were grown on material disks for 48 h and cell number, polysaccharide content, and protein contend of the biofilms were measured. Additionally, regulation of genes involved in early biofilm development (S. aureus icaA, icaC, fnbA, fnbB, clfB, atl; S. epidermidis atlE, aap) was detected using RT-q-PCR. All results were compared to the base alloy without modifications. The results show a correlation between the surface roughness and the protein and polysaccharide content of biofilm structures and also the gene expression of the biofilms grown on the different surface modifications. This is supported by the significantly different protein and polysaccharide contents of the biofilms associated with rough and smooth surface types. Additionally, early phase biofilm genes (particularly icaA, icaC, and aap) are statistically significantly downregulated compared to the control at 48 h on rough surfaces. CoCrMo TiN and polished CoCrMo were the two smooth surface modifications which performed best on the basis of low biofilm content

    MUG-Mel2, a novel highly pigmented and well characterized NRAS mutated human melanoma cell line

    Get PDF
    NRAS mutation in melanoma has been associated with aggressive tumor biology and poor prognosis. Although targeted therapy has been tested for NRAS mutated melanoma, response rates still appear much weaker, than in BRAF mutated melanoma. While plenty of cell lines exist, however, only few melanogenic cell lines retain their in vivo characteristics. In this work we present an intensively pigmented and well-characterized cell line derived from a highly aggressive NRAS mutated cutaneous melanoma, named MUG-Mel2. We present the clinical course, unique morphology, angiogenic properties, growth characteristics using in vivo experiments and 3D cell culture, and results of the exome gene sequencing of an intensively pigmented melanogenic cell line MUG-Mel2, derived from a cutaneous metastasis of an aggressive NRAS p. Q61R mutated melanoma. Amongst several genetic alterations, mutations in GRIN2A, CREBP, PIK3C2G, ATM, and ATR were present. These mutations, known to reinforce DNA repair problems in melanoma, might serve as potential treatment targets. The aggressive and fast growing behavior in animal models and the obtained phenotype in 3D culture reveal a perfect model for research in the field of NRAS mutated melanoma.Peer reviewe

    Enhanced Osteogenic Differentiation of Human Primary Mesenchymal Stem and Progenitor Cultures on Graphene Oxide/Poly(methyl methacrylate) Composite Scaffolds

    No full text
    Due to its versatility, small size, large surface area, and ability to interact with biological cells and tissues, graphene oxide (GO) is an excellent filler for various polymeric composites and is frequently used to expand their functionality. Even though the major advantage of the incorporation of GO is the enhancement of mechanical properties of the composite material, GO is also known to improve bioactivity during biomineralization and promote osteoblast adhesion. In this study, we described the fabrication of a composite bone cement made of GO and poly(methyl methacrylate) (PMMA), and we investigated its potential to enhance osteogenic differentiation of human primary mesenchymal stem and progenitor cells. Through the analysis of three differentiation markers, namely alkaline phosphatase, secreted protein acidic and rich in cysteine, and bone morphogenetic protein-2 in the presence and in the absence of an osteogenic differentiation medium, we were able to indicate a composite produced manually with a thick GO paper as the most effective among all investigated samples. This effect was related to its developed surface, possessing a significant number of voids and pores. In this way, GO/PMMA composites were shown as promising materials for the applications in bone tissue engineering

    Surface Modifications of Titanium Aluminium Vanadium Improve Biocompatibility and Osteogenic Differentiation Potential

    No full text
    Osteogenic cells are strongly influenced in their behaviour by the surface properties of orthopaedic implant materials. Mesenchymal stem and progenitor cells (MSPCs) migrate to the bone–implant interface, adhere to the material surface, proliferate and subsequently differentiate into osteoblasts, which are responsible for the formation of the bone matrix. Five surface topographies on titanium aluminium vanadium (TiAl6V4) were engineered to investigate biocompatibility and adhesion potential of human osteoblasts and the changes in osteogenic differentiation of MSPCs. Elemental analysis of TiAl6V4 discs coated with titanium nitride (TiN), silver (Ag), roughened surface, and pure titanium (cpTi) surface was analysed using energy-dispersive X-ray spectroscopy and scanning electron microscopy. In vitro cell viability, cytotoxicity, adhesion behaviour, and osteogenic differentiation potential were measured via CellTiter-Glo, CytoTox, ELISA, Luminex® technology, and RT-PCR respectively. The Ag coating reduced the growth of osteoblasts, whereas the viability of MSPCs increased significantly. The roughened and the cpTi surface improved the viability of all cell types. The additive coatings of the TiAl6V4 alloy improved the adhesion of osteoblasts and MSPCs. With regard to the osteogenic differentiation potential, an enhanced effect has been demonstrated, especially in the case of roughened and cpTi coatings

    Surface modification and characterization of GO/polymer thin coatings as excellent bio-active platforms for tissue regeneration

    No full text
    Osteo-integration and tissue regeneration are vital for the longevity, durability, and unremitting functionality of medical implants/scaffolds implanted in vivo. It’s essential for biomaterials used for in vivo implantation to induce the cellular secretion of growth factors, necessary for the desired tissue generation, since the administration of artificial growth factors, in vivo, is largely prohibited. Plasma functionalized (N2 and O2) and stabilized Graphene Oxide (GO) thin layers in a hybrid with amorphous carbon (aC) induced the expression of vascular endothelial growth factor (VEGF) and osteoprotegerin (OPG) growth factors in fibroblasts (hGF) and, more remarkably, in osteoblasts (hFOB) cells confirming the suitability for tissue regeneration and osteo-integration applications. We also observed a negative trend between hGF fibroblasts, but not hFOB osteoblasts, cellular viability and GO presence in the hybrid films that might indicate the phenomenon of oxidative stress. We traced that back to the presence of higher concentrations of carboxyl and the carbonyl groups on the surface of the GO rich coatings. The above described properties provided by GO coatings might be desirable for bioselectivity applications and for the reduction of the undesired fibrosis process that is associated with medical implants in vivo environment. Moreover, novel plasma functionalized GO/polymer hybrid thin coating hybrid compositions are promising candidates for tissue engineering and bioengineering applications as excellent antimicrobial and anticancer platforms

    Implant breakage after shoulder arthroplasty: a systematic review of data from worldwide arthroplasty registries and clinical trials

    No full text
    Abstract Background Implant breakage after shoulder arthroplasty is a rare complication after aseptic loosening, infection or persistent pain, resulting in malfunction of the components requiring revision surgery. This correlates with a high burden for the patient and increasing costs. Specific data of complication rates and implant breakage are available in detailed arthroplasty registries, but due to the rare occurrence and possibly underestimated value rarely described in published studies. The aim of this systematic review was to point out the frequency of implant breakage after shoulder arthroplasty. We hypothesized that worldwide arthroplasty registry datasets record higher rates of implant breakage than clinical trials. Methods PubMed, MEDLINE, EMBASE, CINHAL, and the Cochrane Central Register of Controlled Trials database were utilized for this systematic review using the items “(implant fracture/complication/breakage) OR (glenoid/baseplate complication/breakage) AND (shoulder arthroplasty)” according to the PRISMA guidelines on July 3rd, 2023. Study selection, quality assessment, and data extraction were conducted according to the Cochrane standards. Case reports and experimental studies were excluded to reduce bias. The breakage rate per 100,000 observed component years was used to compare data from national arthroplasty registries and clinical trials, published in peer-reviewed journals. Relevant types of shoulder prosthetics were analyzed and differences in implant breakage were considered. Results Data of 5 registries and 15 studies were included. Rates of implant breakage after shoulder arthroplasty were reported with 0.06–0.86% in registries versus 0.01–6.65% in clinical studies. The breakage rate per 100,000 observed component years was 10 in clinical studies and 9 in registries. There was a revision rate of 0.09% for registry data and 0.1% for clinical studies within a 10-year period. The most frequently affected component in connection with implant fracture was the glenoid insert. Conclusion Clinical studies revealed a similar incidence of implant failure compared to data of worldwide arthroplasty registries. These complications arise mainly due to breakage of screws and glenospheres and there seems to be a direct correlation to loosening. Periprosthetic joint infection might be associated with loosening of the prosthesis and subsequent material breakage. We believe that this analysis can help physicians to advise patients on potential risks after shoulder arthroplasty. Level of evidence III

    SK119, a Novel Shikonin Derivative, Leads to Apoptosis in Melanoma Cell Lines and Exhibits Synergistic Effects with Vemurafenib and Cobimetinib

    No full text
    Melanoma is a complex and heterogenous disease, displays the deadliest form of skin cancer, and accounts for approx. 80% of all skin cancer deaths. In this study, we reported on the synthesis and pharmacological effects of a novel shikonin derivative (SK119), which is active in a nano-molar range and exhibits several promising in vitro effects in different human melanoma cells. SK119 was synthesized from shikonin as part of our search for novel, promising shikonin derivatives. It was screened against a panel of melanoma and non-tumorigenic cell lines using XTT viability assays. Moreover, we studied its pharmacological effects using apoptosis and Western blot experiments. Finally, it was combined with current clinically used melanoma therapeutics. SK119 exhibited IC50 values in a nano-molar range, induced apoptosis and led to a dose-dependent increase in the expression and protein phosphorylation of HSP27 and HSP90 in WM9 and MUG-Mel 2 cells. Combinatorial treatment, which is highly recommended in melanoma, revealed the synergistic effects of SK119 with vemurafenib and cobimetinib. SK119 treatment changed the expression levels of apoptosis genes and death receptor expression and exhibited synergistic effects with vemurafenib and cobimetinib in human melanoma cells. Further research indicates a promising potential in melanoma therapy

    Cobalt Chromium Molybdenum Surface Modifications Alter the Osteogenic Differentiation Potential of Human Mesenchymal Stem Cells

    No full text
    Surface roughness on orthopedic implant materials has been shown to be highly influential on the behavior of osteogenic cells. Mesenchymal stem and progenitor cells (MSPCs) migrate to the interface, adhere, proliferate, and differentiate into osteoblasts, which subsequently form bone matrix. Modifications of the implant surfaces should accelerate this process and improve biocompatibility. In this study, five surface topographies on cobalt chromium molybdenum (CoCrMo) were engineered to examine the influence on MSPCs. Scanning electron microscopy revealed significant differences in the morphology of untreated CoCrMo discs in comparison with CoCrMo with a titanium nitride (TiN) coating, polished and porous coated CoCrMo surfaces, and CoCrMo with a pure titanium (cpTi) coating. Elemental analysis was performed using energy-dispersive X-ray spectroscopy (EDX). Human primary MSPCs were expanded from tissue samples of spongiosa bone and characterized according to the criteria of the International Society for Cellular Therapy. The characteristic phenotype of MSPC was confirmed by flow cytometry and multilineage differentiation. Alcaline phosphatase and osteopontin expression increased significantly in all groups about 5-fold and 10-fold, respectively, in comparison to the undifferentiated controls. The porous coated surface showed a reduced expression of osteogenic markers. Due to the osteogenic differentiation, the expression of integrin α5β1, which is particularly important for cell-material contact, increased 4–7-fold. In the dynamic process of bone biology, MSPCs cultured and differentiated on cpTi, showed significant upregulation of IL6 and leptin
    • …
    corecore