1,375 research outputs found
Simple derivation of the frequency dependent complex heat capacity
This paper gives a simple derivation of the well-known expression of the
frequency dependent complex heat capacity in modulated temperature experiments.
It aims at clarified again that the generalized calorimetric susceptibility is
only due to the non-equilibrium behaviour occurring in the vicinity of
thermodynamic equilibrium of slow internal degrees of freedom of a sample when
the temperature oscillates at a well determined frequency
Supercurrent-induced temperature gradient across a nonequilibrium SNS Josephson junction
Using tunneling spectroscopy, we have measured the local electron energy
distribution function in the normal part of a superconductor-normal
metal-superconductor (SNS) Josephson junction containing an extra lead to a
normal reservoir. In the presence of simultaneous supercurrent and injected
quasiparticle current, the distribution function exhibits a sharp feature at
very low energy. The feature is odd in energy, and odd under reversal of either
the supercurrent or the quasiparticle current direction. The feature represents
an effective temperature gradient across the SNS Josephson junction that is
controllable by the supercurrent.Comment: 4 pages, 4 figures, corrected typos, added plot to figure
Spin-memory loss at Co/Ru interfaces
We have determined the spin-memory-loss parameter, , by
measuring the transmission of spin-triplet and spin-singlet Cooper pairs across
Co/Ru interfaces in Josephson junctions and by Current-Perpendicular-to-Plane
Giant Magnetoresistance (CPP-GMR) techniques. The probability of spin-memory
loss at the Co/Ru interface is . From the CPP-MR, we
obtain that is in good agreement with
obtained from spin-triplet transmission. For
spin-singlet transmission, we have that is
different from that obtained from CPP-GMR and spin-triplet transmission. The
source of this difference is not understood.Comment: 9 pages, 9 figure
The stochastic matching problem
The matching problem plays a basic role in combinatorial optimization and in
statistical mechanics. In its stochastic variants, optimization decisions have
to be taken given only some probabilistic information about the instance. While
the deterministic case can be solved in polynomial time, stochastic variants
are worst-case intractable. We propose an efficient method to solve stochastic
matching problems which combines some features of the survey propagation
equations and of the cavity method. We test it on random bipartite graphs, for
which we analyze the phase diagram and compare the results with exact bounds.
Our approach is shown numerically to be effective on the full range of
parameters, and to outperform state-of-the-art methods. Finally we discuss how
the method can be generalized to other problems of optimization under
uncertainty.Comment: Published version has very minor change
Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach
Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution
Effect of Magnetic Impurities on Energy Exchange between Electrons
In order to probe quantitatively the effect of Kondo impurities on energy
exchange between electrons in metals, we have compared measurements on two
silver wires with dilute magnetic impurities (manganese) introduced in one of
them. The measurement of the temperature dependence of the electron phase
coherence time on the wires provides an independent determination of the
impurity concentration. Quantitative agreement on the energy exchange rate is
found with a theory by G\"{o}ppert et al. that accounts for Kondo scattering of
electrons on spin-1/2 impurities.Comment: 4 page
Energy relaxation due to magnetic impurities in mesoscopic wires: Logarithmic approach
The transport in mesoscopic wires with large applied bias voltage has
recently attracted great interest by measuring the energy distribution of the
electrons at a given point of the wire, in Saclay. In the diffusive limit with
negligible energy relaxation that shows two sharp steps at the Fermi energies
of the two contacts, which are broadened due to the energy relaxation. In some
of the experiments the broadening is reflecting an anomalous energy relaxation
rate proportional to instead of valid for Coulomb
electron-electron interaction, where is the energy transfer. Later it has
been suggested that such relaxation rate can be due to electron-electron
interaction mediated by Kondo impurities. In the present paper the latter is
systematically studied in the logarithmic approximation valid above the Kondo
temperature. In the case of large applied bias voltage Kondo resonances are
formed at the steps of the distribution function and they are narrowed by
increasing the bias. An additional Korringa energy broadening occurs for the
spins which smears the Kondo resonances, and the renormalized coupling can be
replaced by a smooth but essentially enhanced average coupling (factor of
8-10). Thus the experimental data can be described by formulas without
logarithmic Kondo corrections, but with enhanced coupling. In certain regions
of large bias, that averaged coupling depends weakly on the bias. In those
cases the distribution function depends only on the ratio of the electron
energy and the bias, showing scaling behavior. The impurity concentrations
estimated from those experiments and other dephasing experiments can be very
different, and a possible explanation considering the surface spin anisotropy
due to strong spin-orbit interaction is the subject of our earlier paper.Comment: 12 pages, RevTex
Aspects of Discrete Breathers and New Directions
We describe results concerning the existence proofs of Discrete Breathers
(DBs) in the two classes of dynamical systems with optical linear phonons and
with acoustic linear phonons. A standard approach is by continuation of DBs
from an anticontinuous limit. A new approach, which is purely variational, is
presented. We also review some numerical results on intraband DBs in random
nonlinear systems. Some non-conventional physical applications of DBs are
suggested. One of them is understanding slow relaxation properties of glassy
materials. Another one concerns energy focusing and transport in biomolecules
by targeted energy transfer of DBs. A similar theory could be used for
describing targeted charge transfer of nonlinear electrons (polarons) and, more
generally, for targeted transfer of several excitations (e.g. Davydov soliton).Comment: to appear in the Proceedings of NATO Advanced Research Workshop
"Nonlinearity and Disorder: Theory and Applications",
Tashkent,Uzbekistan,October 1-6, 200
Structural Relaxation and Frequency Dependent Specific Heat in a Supercooled Liquid
We have studied the relation between the structural relaxation and the
frequency dependent thermal response or the specific heat, , in a
supercooled liquid.
The Mode Coupling Theory (MCT) results are used to obtain
corresponding to different wavevectors. Due to the two-step
relaxation process present in the MCT, an extra peak, in addition to the low
frequency peak, is predicted in specific heat at high frequency.Comment: 14 pages, 13 Figure
- …
