320 research outputs found

    Tactile Discrimination Using Template Classifiers: Towards a Model of Feature Extraction in Mammalian Vibrissal Systems

    Get PDF
    Rats and other whiskered mammals are capable of making sophisticated sensory discriminations using tactile signals from their facial whiskers (vibrissae). As part of a programme of work to develop biomimetic technologies for vibrissal sensing, including whiskered robots, we are devising algorithms for the fast extraction of object parameters from whisker deflection data. Previous work has demonstrated that radial distance to contact can be estimated from forces measured at the base of the whisker shaft. We show that in the case of a moving object contacting a whisker, the measured force can be ambiguous in distinguishing a nearby object moving slowly from a more distant object moving rapidly. This ambiguity can be resolved by simultaneously extracting object position and speed from the whisker deflection time series – that is by attending to the dynamics of the whisker’s interaction with the object. We compare a simple classifier with an adaptive EM (Expectation Maximisation) classifier. Both systems are effective at simultaneously extracting the two parameters, the EM-classifier showing similar performance to a handpicked template classifier. We propose that adaptive classification algorithms can provide insights into the types of computations performed in the rat vibrissal system when the animal is faced with a discrimination task

    Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation

    Get PDF
    The Integrated Science Investigation of the Sun (ISIS) is a complete science investigation on the Solar Probe Plus (SPP) mission, which flies to within nine solar radii of the Sun's surface. ISIS comprises a two-instrument suite to measure energetic particles over a very broad energy range, as well as coordinated management, science operations, data processing, and scientific analysis. Together, ISIS observations allow us to explore the mechanisms of energetic particles dynamics, including their: (1) Origins-defining the seed populations and physical conditions necessary for energetic particle acceleration; (2) Acceleration-determining the roles of shocks, reconnection, waves, and turbulence in accelerating energetic particles; and (3) Transport-revealing how energetic particles propagate from the corona out into the heliosphere. The two ISIS Energetic Particle Instruments measure lower (EPI-Lo) and higher (EPI-Hi) energy particles. EPI-Lo measures ions and ion composition from approx. 20 keV/nucleon-15 MeV total energy and electrons from approx.25-1000 keV. EPI-Hi measures ions from approx. 1-200 MeV/nucleon and electrons from approx. 0.5-6 MeV. EPI-Lo comprises 80 tiny apertures with fields-of-view (FOVs) that sample over nearly a complete hemisphere, while EPI-Hi combines three telescopes that together provide five large-FOV apertures. ISIS observes continuously inside of 0.25 AU with a high data collection rate and burst data (EPI-Lo) coordinated with the rest of the SPP payload; outside of 0.25 AU, ISIS runs in low-rate science mode whenever feasible to capture as complete a record as possible of the solar energetic particle environment and provide calibration and continuity for measurements closer in to the Sun. The ISIS Science Operations Center plans and executes commanding, receives and analyzes all ISIS data, and coordinates science observations and analyses with the rest of the SPP science investigations. Together, ISIS' unique observations on SPP will enable the discovery, untangling, and understanding of the important physical processes that govern energetic particles in the innermost regions of our heliosphere, for the first time. This paper summarizes the ISIS investigation at the time of the SPP mission Preliminary Design Review in January 2014

    Successful Closed Reduction of a Dislocated Constrained Total Hip Arthroplasty: A Case Report and Literature Review

    Get PDF
    Many surgeons use acetabular components with constrained polyethylene liners to improve stability after total hip arthroplasty in patients with a history of hip dislocation. Surgical treatment is generally thought to be the only available option for the dislocated constrained liner. The success rate and clinical results of closed reduction for such patients is unclear. This report presents a case of a successful closed reduction of a dislocated constrained liner. Few papers have so far addressed closed reduction of a dislocated constrained liner. Furthermore, previous studies reported a variety of components. Publication of additional successful and unsuccessful case reports is therefore needed to help establish the optimal treatment protocol for a dislocated constrained liner

    Overdiagnosis and overtreatment of breast cancer: Is overdiagnosis an issue for radiologists?

    Get PDF
    Overdiagnosis is diagnosis of cancers that would not present within the life of the patient and is one of the downsides of screening. This applies to low-grade ductal carcinoma in situ and some small grade 1 invasive cancers. Radiologists are responsible for cancer diagnosis, but at the time of diagnosis they cannot determine whether a particular low-grade diagnosis is one to which the definition of overdiagnosis applies. Overdiagnosis is likely to be driven by technological developments, including digital mammography, computer-aided detection and improved biopsy techniques. It is also driven by the patient's fear that cancer will be missed and the doctor's fear of litigation. It is therefore an issue of importance for radiologists, presenting them with difficult fine-tuned decisions in every assessment clinic that are ultimately counted later by those who evaluate their screening

    Computer-aided detection system for clustered microcalcifications: comparison of performance on full-field digital mammograms and digitized screen-film mammograms

    Full text link
    We have developed a computer-aided detection (CAD) system to detect clustered microcalcifications automatically on full-field digital mammograms (FFDMs) and a CAD system for screen-film mammograms (SFMs). The two systems used the same computer vision algorithms but their false positive (FP) classifiers were trained separately with sample images of each modality. In this study, we compared the performance of the CAD systems for detection of clustered microcalcifications on pairs of FFDM and SFM obtained from the same patient. For case-based performance evaluation, the FFDM CAD system achieved detection sensitivities of 70%, 80% and 90% at an average FP cluster rate of 0.07, 0.16 and 0.63 per image, compared with an average FP cluster rate of 0.15, 0.38 and 2.02 per image for the SFM CAD system. The difference was statistically significant with the alternative free-response receiver operating characteristic (AFROC) analysis. When evaluated on data sets negative for microcalcification clusters, the average FP cluster rates of the FFDM CAD system were 0.04, 0.11 and 0.33 per image at detection sensitivity level of 70%, 80% and 90% compared with an average FP cluster rate of 0.08, 0.14 and 0.50 per image for the SFM CAD system. When evaluated for malignant cases only, the difference of the performance of the two CAD systems was not statistically significant with AFROC analysis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58099/2/pmb7_4_008.pd
    • …
    corecore