16,150 research outputs found
Competing Quantum Orderings in Cuprate Superconductors: A Minimal Model
We present a minimal model for cuprate superconductors. At the unrestricted
mean-field level, the model produces homogeneous superconductivity at large
doping, striped superconductivity in the underdoped regime and various
antiferromagnetic phases at low doping and for high temperatures. On the
underdoped side, the superconductor is intrinsically inhomogeneous and global
phase coherence is achieved through Josephson-like coupling of the
superconducting stripes. The model is applied to calculate experimentally
measurable ARPES spectra.Comment: 5 pages, 4 eps included figure
INTEGRAL discovery of unusually long broad-band X-ray activity from the Supergiant Fast X-ray Transient IGR J18483-0311
We report on a broad-band X-ray study (0.5-250 keV) of the Supergiant Fast
X-ray Transient IGR J18483-0311 using archival INTEGRAL data and a new targeted
XMM-Newton observation. Our INTEGRAL investigation discovered for the first
time an unusually long X-ray activity (3-60 keV) which continuously lasted for
at least 11 days, i.e. a significant fraction (about 60%) of the entire orbital
period, and spanned orbital phases corresponding to both periastron and
apastron passages. This prolongated X-ray activity is at odds with the much
shorter durations marking outbursts from classical SFXTs especially above 20
keV, as such it represents a departure from their nominal behavior and it adds
a further extreme characteristic to the already extreme SFXT IGR J18483-0311.
Our IBIS/ISGRI high energy investigation (100-250 keV) of archival outbursts
activity from the source showed that the recently reported hint of a possible
hard X-ray tail is not real and it is likely due to noisy background. The new
XMM-Newton targeted observation did not detect any sign of strong X-ray
outburst activity from the source despite being performed close to its
periastron passage, on the contrary IGR J18483-0311 was caught during the
common intermediate X-ray state with a low luminosity value of 3x10^33 erg s^-1
(0.5-10 keV). We discuss all the reported results in the framework of both
spherically symmetric clumpy wind scenario and quasi-spherical settling
accretion model.Comment: Accepted for publication on MNRAS. 10 pages, 7 figures, 1 tabl
Electron Dynamics in a Coupled Quantum Point Contact Structure with a Local Magnetic Moment
We develop a theoretical model for the description of electron dynamics in
coupled quantum wires when the local magnetic moment is formed in one of the
wires. We employ a single-particle Hamiltonian that takes account of the
specific geometry of potentials defining the structure as well as electron
scattering on the local magnetic moment. The equations for the wave functions
in both wires are derived and the approach for their solution is discussed. We
determine the transmission coefficient and conductance of the wire having the
local magnetic moment and show that our description reproduces the
experimentally observed features.Comment: Based on work presented at 2004 IEEE NTC Quantum Device Technology
Worksho
Thermodiffusion in model nanofluids by molecular dynamics simulations
In this work, a new algorithm is proposed to compute single particle
(infinite dilution) thermodiffusion using Non-Equilibrium Molecular Dynamics
simulations through the estimation of the thermophoretic force that applies on
a solute particle. This scheme is shown to provide consistent results for
simple Lennard-Jones fluids and for model nanofluids (spherical non-metallic
nanoparticles + Lennard-Jones fluid) where it appears that thermodiffusion
amplitude, as well as thermal conductivity, decrease with nanoparticles
concentration. Then, in nanofluids in the liquid state, by changing the nature
of the nanoparticle (size, mass and internal stiffness) and of the solvent
(quality and viscosity) various trends are exhibited. In all cases the single
particle thermodiffusion is positive, i.e. the nanoparticle tends to migrate
toward the cold area. The single particle thermal diffusion 2 coefficient is
shown to be independent of the size of the nanoparticle (diameter of 0.8 to 4
nm), whereas it increases with the quality of the solvent and is inversely
proportional to the viscosity of the fluid. In addition, this coefficient is
shown to be independent of the mass of the nanoparticle and to increase with
the stiffness of the nanoparticle internal bonds. Besides, for these
configurations, the mass diffusion coefficient behavior appears to be
consistent with a Stokes-Einstein like law
Detection of local-moment formation using the resonant interaction between coupled quantum wires
We study the influence of many-body interactions on the transport
characteristics of a novel device structure, consisting of a pair of quantum
wires that are coupled to each other by means of a quantum dot. Under
conditions where a local magnetic moment is formed in one of the wires, we show
that tunnel coupling to the other gives rise to an associated peak in its
density of states, which can be detected directly in a conductance measurement.
Our theory is therefore able to account for the key observations in the recent
study of T. Morimoto et al. [Appl. Phys. Lett. {\bf 82}, 3952 (2003)], and
demonstrates that coupled quantum wires may be used as a system for the
detection of local magnetic-moment formation
Swift/XRT follow-up observations of unidentified INTEGRAL/IBIS sources
Many sources listed in the 4th IBIS/ISGRI survey are still unidentified, i.e.
lacking an X-ray counterpart or simply not studied at lower energies (< 10
keV). The cross-correlation between the list of IBIS sources in the 4th
catalogue and the Swift/XRT data archive is of key importance to search for the
X-ray counterparts; in fact, the positional accuracy of few arcseconds obtained
with XRT allows us to perform more efficient and reliable follow-up
observations at other wavelengths (optical, UV, radio). In this work, we
present the results of the XRT observations for four new gamma-ray sources: IGR
J12123-5802, IGR J1248.2-5828, IGR J13107-5626 and IGR J14080-3023. For IGR
J12123-5802 we find a likely counterpart, but further information are needed to
classified this object, IGR J1248.2-5828 is found to be a Seyfert 1.9, for IGR
J13107-5626 we suggest a possible AGN nature, while IGR J14080-3023 is
classified as a Seyfert 1.5 galaxy.Comment: 6 pages, 4 figure and 2 tables. Accepted for publication on PoS
(contribution PoS(extremesky2009)018), proceedings of "The Extreme sky:
Sampling the Universe above 10 keV", held in Otranto (Italy), 13-17 October
200
- …