1,261 research outputs found
Flow transitions in two-dimensional foams
For sufficiently slow rates of strain, flowing foam can exhibit inhomogeneous
flows. The nature of these flows is an area of active study in both
two-dimensional model foams and three dimensional foam. Recent work in
three-dimensional foam has identified three distinct regimes of flow [S. Rodts,
J. C. Baudez, and P. Coussot, Europhys. Lett. {\bf 69}, 636 (2005)]. Two of
these regimes are identified with continuum behavior (full flow and
shear-banding), and the third regime is identified as a discrete regime
exhibiting extreme localization. In this paper, the discrete regime is studied
in more detail using a model two dimensional foam: a bubble raft. We
characterize the behavior of the bubble raft subjected to a constant rate of
strain as a function of time, system size, and applied rate of strain. We
observe localized flow that is consistent with the coexistence of a power-law
fluid with rigid body rotation. As a function of applied rate of strain, there
is a transition from a continuum description of the flow to discrete flow when
the thickness of the flow region is approximately 10 bubbles. This occurs at an
applied rotation rate of approximately
Statistics of Bubble Rearrangements in a Slowly Sheared Two-dimensional Foam
Many physical systems exhibit plastic flow when subjected to slow steady
shear. A unified picture of plastic flow is still lacking; however, there is an
emerging theoretical understanding of such flows based on irreversible motions
of the constituent ``particles'' of the material. Depending on the specific
system, various irreversible events have been studied, such as T1 events in
foam and shear transformation zones (STZ's) in amorphous solids. This paper
presents an experimental study of the T1 events in a model, two-dimensional
foam: bubble rafts. In particular, I report on the connection between the
distribution of T1 events and the behavior of the average stress and average
velocity profiles during both the initial elastic response of the bubble raft
and the subsequent plastic flow at sufficiently high strains
Thermodynamics of polymer adsorption to a flexible membrane
We analyze the structural behavior of a single polymer chain grafted to an
attractive, flexible surface. Our model is composed of a coarse-grained
bead-and-spring polymer and a tethered membrane. By means of extensive parallel
tempering Monte Carlo simulations it is shown that the system exhibits a rich
phase behavior ranging from highly ordered, compact to extended random coil
structures and from desorbed to completely adsorbed or even partially embedded
conformations. These findings are summarized in a pseudophase diagram
indicating the predominant class of conformations as a function of the external
parameters temperature and polymer-membrane interaction strength. By comparison
with adsorption to a stiff membrane surface it is shown that the flexibility of
the membrane gives rise to qualitatively new behavior such as stretching of
adsorbed conformations
Elastic Lennard-Jones Polymers Meet Clusters -- Differences and Similarities
We investigate solid-solid and solid-liquid transitions of elastic flexible
off-lattice polymers with Lennard-Jones monomer-monomer interaction and
anharmonic springs by means of sophisticated variants of multicanonical Monte
Carlo methods. We find that the low-temperature behavior depends strongly and
non-monotonically on the system size and exhibits broad similarities to unbound
atomic clusters. Particular emphasis is dedicated to the classification of
icosahedral and non-icosahedral low-energy polymer morphologies.Comment: 9 pages, 17 figure
Viscoelastic shear banding in foam
Shear banding is an important feature of flow in complex fluids. Essentially,
shear bands refer to the coexistence of flowing and non-flowing regions in
driven material. Understanding the possible sources of shear banding has
important implications for a wide range of flow applications. In this regard,
quasi-two dimensional flow offers a unique opportunity to study competing
factors that result in shear bands. One proposal is the competition between
intrinsic dissipation and an external source of dissipation. In this paper, we
report on the experimental observation of the transition between different
classes of shear-bands that have been predicted to exist in cylindrical
geometry as the result of this competition [R. J. Clancy, E. Janiaud, D.
Weaire, and S. Hutzlet, Eur. J. Phys. E, {\bf 21}, 123 (2006)]
Impact of boundaries on velocity profiles in bubble rafts
Under conditions of sufficiently slow flow, foams, colloids, granular matter,
and various pastes have been observed to exhibit shear localization, i.e.
regions of flow coexisting with regions of solid-like behavior. The details of
such shear localization can vary depending on the system being studied. A
number of the systems of interest are confined so as to be quasi-two
dimensional, and an important issue in these systems is the role of the
confining boundaries. For foams, three basic systems have been studied with
very different boundary conditions: Hele-Shaw cells (bubbles confined between
two solid plates); bubble rafts (a single layer of bubbles freely floating on a
surface of water); and confined bubble rafts (bubbles confined between the
surface of water below and a glass plate on top). Often, it is assumed that the
impact of the boundaries is not significant in the ``quasi-static limit'', i.e.
when externally imposed rates of strain are sufficiently smaller than internal
kinematic relaxation times. In this paper, we directly test this assumption for
rates of strain ranging from to . This
corresponds to the quoted quasi-static limit in a number of previous
experiments. It is found that the top plate dramatically alters both the
velocity profile and the distribution of nonlinear rearrangements, even at
these slow rates of strain.Comment: New figures added, revised version accepted for publication in Phys.
Rev.
Microcanonical entropy inflection points: Key to systematic understanding of transitions in finite systems
We introduce a systematic classification method for the analogs of phase
transitions in finite systems. This completely general analysis, which is
applicable to any physical system and extends towards the thermodynamic limit,
is based on the microcanonical entropy and its energetic derivative, the
inverse caloric temperature. Inflection points of this quantity signal
cooperative activity and thus serve as distinct indicators of transitions. We
demonstrate the power of this method through application to the long-standing
problem of liquid-solid transitions in elastic, flexible homopolymers.Comment: 4 pages, 3 figure
Tunable Feshbach resonances in collisions of ultracold molecules in states with alkali-metal atoms
We consider the magnetically tunable Feshbach resonances that may exist in
ultracold mixtures of molecules in states and alkali-metal atoms. We
focus on Rb+CaF as a prototype system. There are likely to be Feshbach
resonances analogous to those between pairs of alkali-metal atoms. We
investigate the patterns of near-threshold states and the resonances that they
cause, using coupled-channel calculations of the bound states and low-energy
scattering on model interaction potentials. We explore the dependence of the
properties on as-yet-unknown potential parameters. There is a high probability
that resonances will exist at magnetic fields below 1000 G, and that these will
be broad enough to control collisions and form triatomic molecules by
magnetoassociation. We consider the effect of CaF rotation and potential
anisotropy, and conclude that they may produce additional resonances but should
not affect the existence of rotation-free resonances
Tunable Feshbach resonances in collisions of ultracold molecules in 2Σ states with alkali-metal atoms
We consider the magnetically tunable Feshbach resonances that may exist in ultracold mixtures of molecules in 2Σmstates and alkali-metal atoms. We focus on Rb +CaF as a prototype system. There are likely to be Feshbach resonances analogous to those between pairs of alkali-metal atoms. We investigate the patterns of near-threshold states and the resonances that they cause, using coupled-channel calculations of the bound states and low-energy scattering on model interaction potentials. We explore the dependence of the properties on as-yet-unknown potential parameters. There is a high probability that resonances will exist at magnetic fields below 1000 G, and that these will be broad enough to control collisions and form triatomic molecules by magnetoassociation. We consider the effects of CaF rotation and anisotropy of the interaction potential, and conclude that they may produce additional resonances but should not affect the existence of rotation-free resonances
Membrane fouling during the fractionation of phytosterols isolated from orange juice
The aim of this study is to isolate phytosterol compounds from orange juice using ultrafiltration (UF) flat sheet membranes (supplied by Alfa Laval) with molecular weight cut-off (MWCO) values of 10 kDa fabricated from regenerated cellulose, polyethersulphone and fluoropolymer. A cross-flow filtration rig operated at a transmembrane pressure (TMP) of 0.5–2 bar, and a cross-flow velocity (CFV) of 0.5–1.5 m s−1. Membrane rejection towards total phytosterols, proteins, sugars were determined along with antioxidant activity. The regenerated cellulose membrane displayed the highest permeate flux (a pseudo steady-state value of 22 L m−2 h−1), with a higher fouling index (75%) and a good separation efficiency of phytosterols (32% rejection towards phytosterols) from orange juice. Although the yield of phytosterols was relatively low (40 mg/L), there is a great potential to optimise the filtration process to produce commercially relevant amount of phytosterols. All membranes investigated displayed cleaning efficiencies of >95%.</p
- …