97 research outputs found

    Preliminary interpretative analysis of the QUENCH-18 bundle test using SCDAPSim/mod3.5

    Get PDF
    A preliminary analysis of the bundle reflood experiment QUENCH-18 is performed with the SCDAPSim/Mod3.5/da code containing the PSI-developed model for oxidation in the presence of air. The simulation follows on from pre-test planning and prediction calculations using the same code and input model. The starting point for the post-test calculations differs from the pre-test only in respect of using the actual boundary conditions. Comparison with measured data enables several aspects of the experiment to be studied. Various treatments of steam and air oxidation kinetics investigate the effect of nitrogen on the oxidation and its continuing influence when air is no longer present. Concerning degradation, different assumptions on failure of the oxide crust indicate how the exposure of relocated metallic melt can enhance the oxidation excursion during reflood. Some modelling and knowledge limitations are identified, particularly regarding oxidation in steam-air mixtures, the roles of nitrogen and zirconium nitride as chemically active species. Several observed features of the facility operation remain unresolved. Simulations suggest that damage to the shroud affected the reflood progression. The bundle may also have been in a highly damaged state, with further impacts on reflooding. Interpretation is therefore provisional, pending more information on the bundle final state. However, the simulation results have significant implications for reactor calculations

    Analytical pre-test support of boil-down test QUENCH-11

    Get PDF
    Analytische UnterstĂŒtzung zur Vorbereitung des Ausdampf-Versuchs QUENCH-11 Im QUENCH-Vorhaben des Forschungszentrums Karlsruhe soll das Fluten eines teilweise zerstörten Kerns untersucht werden. Der zweite LACOMERA Versuch Q-L2 (QUENCH-11) beginnt mit einer Ausdampfphase des BĂŒndels, bis der Wasserspiegel das untere BĂŒndelÂŹende erreicht hat. Ein derartiger Versuch wurde bislang noch nicht in der QUENCH-Anlage durchgefĂŒhrt, so dass mit SCDAP/RELAP5 mod3.2.irs eine Machbarkeitsstudie erforderlich war. Die Ergebnisse zeigen, dass eine Zusatzheizung im unteren Plenum notwendig ist, um den Wasserstand und die Verdampfungsrate (Dampfmassenstrom in der Ausdampfphase) unabhĂ€ngig von der angestrebten Maximaltemperatur im BĂŒndel zu regeln. FĂŒr eine verlĂ€ssÂŹliche Versuchsplanung sowie zur Erstellung der Energiebilanz muss die Zusatzheizung inÂŹnerhalb des unteren Plenums unterhalb der WasseroberflĂ€che installiert werden, damit die Heizleistung vollstĂ€ndig in das Wasser eingekoppelt wird. Um die Verdampfungsrate ĂŒber lĂ€ngere Zeit aufrecht zu erhalten, muss zusĂ€tzlich Wasser in das untere Plenum eingespeist werden. Anhand dieser Rechnungen wird der Testablauf im Detail diskutiert. Eine entsprechende Studie zeigte die DurchfĂŒhrbarkeit eines solchen Ausdampftests und war die Grundlage fĂŒr die oben erwĂ€hnten Änderungen in der Anlage und der Versuchs-DurchfĂŒhrung gegenĂŒber frĂŒheren Tests. Eine Reihe von Vorversuche wurde durchgefĂŒhrt, um die Brauchbarkeit der Änderungen an der Anlage und der geplanten VersuchsfĂŒhrung zu prĂŒfen und um Daten fĂŒr das thermohydraulische Verhalten der Anlage zu bekommen, an denen die Code-Modelle fĂŒr die Voraus- und Nachrechnungen von QUENCH-11 getestet werden können. Im Anschluss an die Vorversuche wurden wie bei frĂŒheren QUENCH-Tests detaillierte Vorausrechnungen mit verschiedenen Codes zu Versuchsablauf und -steuerung durchgefĂŒhrt. Drei ForschungsÂŹeinrichtungen in der EU waren beteiligt. Die berechneten Ergebnisse reagieren empfindlich auf Änderungen der Versuchsparameter wie das anfĂ€ngliche axiale Temperaturprofil und die eingespeiste elektrische Leistung, wie es auch fĂŒr die untersuchten physikalischen BedinÂŹgungen im Versuch erwartet werden kann

    Nitriding model for zirconium based fuel cladding in severe accident codes

    Get PDF
    A model has been developed to describe the nitriding of partially oxidized zirconium based cladding during an air ingress sequence when the reaction has become starved of oxidant (oxygen and/or steam), and the subsequent re-oxidation of nitride following of restoration of coolant. Key aspects of the model are the estimation of oxygen-stabilised alpha zirconium, α-Zr(O), formed during pre-oxidation and its reaction with the nitrogen. Nitriding of metallic Zr is much slower than α-Zr(O), and plays a comparatively minor role. The model is based on data from separate-effects tests comprised pre-oxidation, nitriding in the absence of oxidant, and re-oxidation in the absence of nitrogen, which were used to derive the kinetic parameters for the main reaction processes. Developmental assessment was performed using the test results, demonstrating favourable agreement for the main reaction signatures. Independent assessment against Integral Test data is underway

    “A question of trust” and “a leap of faith”-study participants' perspectives on consent, privacy, and trust in smart home research:Qualitative study

    Get PDF
    BACKGROUND: Ubiquitous, smart technology has the potential to assist humans in numerous ways, including with health and social care. COVID-19 has notably hastened the move to remotely delivering many health services. A variety of stakeholders are involved in the process of developing technology. Where stakeholders are research participants, this poses practical and ethical challenges, particularly if the research is conducted in people’s homes. Researchers must observe prima facie ethical obligations linked to participants’ interests in having their autonomy and privacy respected. OBJECTIVE: This study aims to explore the ethical considerations around consent, privacy, anonymization, and data sharing with participants involved in SPHERE (Sensor Platform for Healthcare in a Residential Environment), a project for developing smart technology for monitoring health behaviors at home. Participants’ unique insights from being part of this unusual experiment offer valuable perspectives on how to properly approach informed consent for similar smart home research in the future. METHODS: Semistructured qualitative interviews were conducted with 7 households (16 individual participants) recruited from SPHERE. Purposive sampling was used to invite participants from a range of household types and ages. Interviews were conducted in participants’ homes or on-site at the University of Bristol. Interviews were digitally recorded, transcribed verbatim, and analyzed using an inductive thematic approach. RESULTS: Four themes were identified—motivation for participating; transparency, understanding, and consent; privacy, anonymity, and data use; and trust in research. Motivations to participate in SPHERE stemmed from an altruistic desire to support research directed toward the public good. Participants were satisfied with the consent process despite reporting some difficulties—recalling and understanding the information received, the timing and amount of information provision, and sometimes finding the information to be abstract. Participants were satisfied that privacy was assured and judged that the goals of the research compensated for threats to privacy. Participants trusted SPHERE. The factors that were relevant to developing and maintaining this trust were the trustworthiness of the research team, the provision of necessary information, participants’ control over their participation, and positive prior experiences of research involvement. CONCLUSIONS: This study offers valuable insights into the perspectives of participants in smart home research on important ethical considerations around consent and privacy. The findings may have practical implications for future research regarding the types of information researchers should convey, the extent to which anonymity can be assured, and the long-term duty of care owed to the participants who place trust in researchers not only on the basis of this information but also because of their institutional affiliation. This study highlights important ethical implications. Although autonomy matters, trust appears to matter the most. Therefore, researchers should be alert to the need to foster and maintain trust, particularly as failing to do so might have deleterious effects on future research

    First results of the QUENCH-ALISA bundle test

    Get PDF
    Experiment QUENCH-18 on air ingress and aerosol release was successfully conducted at KIT on 27 September 2017. This test was performed in the frame of the EC supported ALISA programme. It was proposed by XJTU Xi’an (China) and supported by PSI (Switzerland) and GRS (Germany). The primary aims were to examine the oxidation of M5Âź claddings (OD=9.5 mm, wall thickness 570 ”m) in air/steam mixture following a limited pre-oxidation in steam, and to achieve a long period of oxygen and steam starvations to promote interaction with the nitrogen. QUENCH-18 was thus a companion test to the earlier air ingress experiments, QUENCH-10 and -16 (in contrast to QUENCH-18, these two bundle tests were performed without steam flow during the air ingress stage). Additionally, the QUENCH 18 experiment investigated the effects of the presence of two Ag/In/Cd control rods on early-phase bundle degradation (companion test to the QUENCH-13 experiment), and two pressured unheated rod simulators (60 bar, He). The low pressurised heater rods (2.3 bar, similar to the system pressure) were Kr-filled. In a first transient, the bundle was heated from the peak cladding temperature Tpct ≈ 900 K in an atmosphere of flowing argon (3 g/s) and superheated steam (3.3 g/s) by electrical power increase to the peak cladding temperature of Tpct ≈ 1400 K. During this heat-up (with the heat-up rate 0.3 K/s), claddings of the two pressurised rods were burst at temperature of 1045 K. The attainment of Tpct ≈ 1400 K marked the start of the pre-oxidation phase to achieve a maximum cladding oxide layer thickness of up to 120 ”m. Then the power was reduced from 9 to 3.8 kW (simulation of decay heat) which effected a cooling of the bundle to Tpct ≈ 1080 K, as a preparation for the air ingress phase. In the subsequent air ingress stage, the steam flow was reduced to 0.3 g/s, the argon flow was reduced to 1 g/s, and air was injected with the flow rate of 0.2 g/s. The change in flow conditions had the immediate effect of reducing the heat transfer so that the temperatures began to rise again. After some time measurements demonstrated a gradual increasing consumption of oxygen. The first Ag/In/Cd aerosol release was registered at Tpct = 1350 K and was dominated by Cd bearing aerosols. Later in the transient, a significant release of Ag was observed along with continued Cd release, as well as a small amount of In. In contrast to the QUENCH-16 test (performed with the air ingress stage without steam flow), oxidation of bundle parts in steam caused release of additional chemical energy (power about 4 kW) and consequently acceleration of bundle heat-up. A strong temperature escalation started in the middle of the air ingress stage. Later a period of oxygen starvation was occurred and was followed by almost complete steam consumption and partial consumption of the nitrogen, indicating the possibility of bundle. Following this the temperatures continued to increase and stabilised at melting temperature of Zr bearing materials until water injection. The total uptakes of oxygen, steam and nitrogen were 100±3, 450±10 and 120±3 g, respectively. During the starvation period a noticeable production (about 25 mg/s, totally 45±1 g) of hydrogen was measured. Almost immediately after the start of reflood there was a temperature excursion in the mid to upper regions of the bundle, leading to maximum measured temperatures of about 2450 K. Reflood progressed rather slowly and final quench was achieved after about 800 s. A significant quantity of hydrogen was generated during the reflood (238±2 g). Nitrogen release (>54 g) due to re-oxidation of nitrides was also registered

    CoreSOAR Core Degradation State-of-the Art Report Update: Conclusions [in press]

    Get PDF
    In 1991 the CSNI published the first State-of-the-Art Report on In-Vessel Core Degradation, which was updated to 1995 under the EC 3rd Framework programme. These covered phenomena, experimental programmes, material data, main modelling codes, code assessments, identification of modelling needs, and conclusions including the needs for further research. This knowledge was fundamental to such safety issues as in-vessel melt retention of the core, recovery of the core by water reflood, hydrogen generation and fission product release. In the last 20 years, there has been much progress in understanding, with major experimental series finished, e.g. the integral in-reactor Phébus FP tests, while others have many tests completed, e.g. the electrically-heated QUENCH series on reflooding degraded rod bundles, and one test using a debris bed. The small-scale PRELUDE/PEARL experiments study debris bed quench, while LIVE examines melt pool behaviour in the lower head using simulant materials. The integral severe accident modelling codes, such as MELCOR and MAAP (USA) and ASTEC (Europe), encapsulate current knowledge in a quantitative way. After two EC-funded projects on the SARNET network of excellence, continued in NUGENIA, it is timely to take stock of the vast range of knowledge and technical improvements gained in the experimental and modelling areas. The CoreSOAR project, in NUGENIA/SARNET, drew together the experience of 11 European partners to update the state of the art in core degradation, finishing at the end of 2018. The review covered knowledge of phenomena, available integral experiments, separate-effects data, modelling codes and code validation, then drawing overall conclusions and identifying needs for further research. The final report serves as a reference for current and future research programmes concerning core degradation in NUGENIA, in other EC research projects such as in Horizon2020 and for projects under the auspices of OECD/NEA/CSNI

    Construction of the Sophia Observation withdrawal Symptoms-scale (SOS) for critically ill children

    Get PDF
    Objective: To construct a reliable and clinically practical instrument for monitoring opioids and benzodiazepine withdrawal symptoms in pediatric ICU patients. Design: Instrument development. Setting: Intensive care unit in an academic children's hospital. Patients and participants: 79 patients up to age 16 years on intravenous midazolam and/or opioids for ≄5 days. An expert panel of 85 physicians and nurses rated clinical relevance of withdrawal symptoms. Intervention: During drug weaning repeated observations were performed with a checklist of 24 withdrawal symptoms described in the literature. Measurements and results: For 76 children, 932 observations were obtained within 24 h after decrease and/or discontinuation of midazolam or opioids. Most frequent symptoms were tachypnea, agitation, motor disturbance, diarrhea, fever, anxiety, sleep disturbance and hypertension (14.6-29.6%). Multidimensional scaling (MDS) was performed to detect the underlying empirical structure of co-occurrences of symptoms. An expert panel judged clinical relevance of each withdrawal symptom on a four-point scale ranging from 'definitively so' to 'definitively not'. Agitation, an

    Final Interpretation Report of the PHEBUS test FPT0: Bundle Aspects

    Get PDF
    In this paper, the actual status of understanding of the dominant bundle degradation processes is presented. Here, mainly the results reported in the last years in the Bundle Interpretation Circles organised by JRC/IE and IRSN (Institut de Radioprotection et de Surete Nucleaire, Cadarache) are summarised. For the extensive and detailed computational analyses the commonly used severe accident codes such as ICARE, MELCOR, SCDAP/RELAP and ATHLET-CD are used. For the analysis of fission product release from the FPT0 bundle, specific codes such as SVECHA and XMPR were used as well.JRC.F.4-Nuclear design safet

    Deciding Together?:Best Interests and Shared Decision-Making in Paediatric Intensive Care

    Get PDF
    In the western healthcare, shared decision making has become the orthodox approach to making healthcare choices as a way of promoting patient autonomy. Despite the fact that the autonomy paradigm is poorly suited to paediatric decision making, such an approach is enshrined in English common law. When reaching moral decisions, for instance when it is unclear whether treatment or non-treatment will serve a child’s best interests, shared decision making is particularly questionable because agreement does not ensure moral validity. With reference to current common law and focusing on intensive care practice, this paper investigates what claims shared decision making may have to legitimacy in a paediatric intensive care setting. Drawing on key texts, I suggest these identify advantages to parents and clinicians but not to the child who is the subject of the decision. Without evidence that shared decision making increases the quality of the decision that is being made, it appears that a focus on the shared nature of a decision does not cohere with the principle that the best interests of the child should remain paramount. In the face of significant pressures toward the displacement of the child’s interests in a shared decision, advantages of a shared decision to decisional quality require elucidation. Although a number of arguments of this nature may have potential, should no such advantages be demonstrable we have cause to revise our commitment to either shared decision making or the paramountcy of the child in these circumstances
    • 

    corecore