7 research outputs found

    Standardization and validation of a novel and simple method to assess lumbar dural sac size

    Get PDF
    AimTo develop and validate a simple, reproducible method to assess dural sac size using standard imaging technology.Materials and methodsThis study was institutional review board-approved. Two readers, blinded to the diagnoses, measured anterior–posterior (AP) and transverse (TR) dural sac diameter (DSD), and AP vertebral body diameter (VBD) of the lumbar vertebrae using MRI images from 53 control patients with pre-existing MRI examinations, 19 prospectively MRI-imaged healthy controls, and 24 patients with Marfan syndrome with prior MRI or CT lumbar spine imaging. Statistical analysis utilized linear and logistic regression, Pearson correlation, and receiver operating characteristic (ROC) curves.ResultsAP-DSD and TR-DSD measurements were reproducible between two readers (r = 0.91 and 0.87, respectively). DSD (L1–L5) was not different between male and female controls in the AP or TR plane (p = 0.43; p = 0.40, respectively), and did not vary by age (p = 0.62; p = 0.25) or height (p = 0.64; p = 0.32). AP-VBD was greater in males versus females (p = 1.5 × 10−8), resulting in a smaller dural sac ratio (DSR) (DSD/VBD) in males (p = 5.8 × 10−6). Marfan patients had larger AP-DSDs and TR-DSDs than controls (p = 5.9 × 10−9; p = 6.5 × 10−9, respectively). Compared to DSR, AP-DSD and TR-DSD better discriminate Marfan from control subjects based on area under the curve (AUC) values from unadjusted ROCs (AP-DSD p < 0.01; TR-DSD p = 0.04).ConclusionIndividual vertebrae and L1–L5 (average) AP-DSD and TR-DSD measurements are simple, reliable, and reproducible for quantitating dural sac size without needing to control for gender, age, or height

    Beware Cold Agglutinins in Organ Donors! Ex Vivo Lung Perfusion From an Uncontrolled Donation After Circulatory-Determination-of-Death Donor With a Cold Agglutinin: A Case Report

    Get PDF
    Background We began to recover lungs from uncontrolled donation after circulatory determination of death to assess for transplant suitability by means of ex vivo lung perfusion (EVLP) and computerized tomographic (CT) scan. Our first case had a cold agglutinin with an interesting outcome. Case report A 60-year-old man collapsed at home and was pronounced dead by Emergency Medical Services personnel. Next-of-kin consented to lung retrieval, and the decedent was ventilated and transported. Lungs were flushed with cold Perfadex, removed, and stored cold. The lungs did not flush well. Medical history revealed a recent hemolytic anemia and a known cold agglutinin. Warm nonventilated ischemia time was 51 minutes. O2-ventilated ischemia time was 141 minutes. Total cold ischemia time was 6.5 hours. At cannulation for EVLP, established clots were retrieved from both pulmonary arteries. At initiation of EVLP with Steen solution, tiny red aggregates were observed initially. With warming, the aggregates disappeared and the perfusate became red. After 1 hour, EVLP was stopped because of florid pulmonary edema. The lungs were cooled to 20°C; tiny red aggregates formed again in the perfusate. Ex vivo CT scan showed areas of pulmonary edema and a pyramidal right middle lobe opacity. Dissection showed multiple pulmonary emboli—the likely cause of death. However, histology showed agglutinated red blood cells in the microvasculature in pre- and post-EVLP biopsies, which may have contributed to inadequate parenchymal preservation. Conclusions Organ donors with cold agglutinins may not be suitable owing to the impact of hypothermic preservation
    corecore