35 research outputs found

    The Sparrow Question: Social and Scientific Accord in Britain, 1850-1900.

    Get PDF
    During the latter-half of the nineteenth century, the utility of the house sparrow (Passer domesticus) to humankind was a contentious topic. In Britain, numerous actors from various backgrounds including natural history, acclimatisation, agriculture and economic ornithology converged on the bird, as contemporaries sought to calculate its economic cost and benefit to growers. Periodicals and newspapers provided an accessible and anonymous means of expression, through which the debate raged for over 50 years. By the end of the century, sparrows had been cast as detrimental to agriculture. Yet consensus was not achieved through new scientific methods, instruments, or changes in practice. This study instead argues that the rise and fall of scientific disciplines and movements paved the way for consensus on "the sparrow question." The decline of natural history and acclimatisation stifled a raging debate, while the rising science of economic ornithology sought to align itself with agricultural interests: the latter overwhelmingly hostile to sparrows

    SHRED Is a Regulatory Cascade that Reprograms Ubr1 Substrate Specificity for Enhanced Protein Quality Control during Stress

    No full text
    When faced with proteotoxic stress, cells mount adaptive responses to eliminate aberrant proteins. Adaptive responses increase the expression of protein folding and degradation factors to enhance the cellular quality control machinery. However, it is unclear whether and how this augmented machinery acquires new activities during stress. Here, we uncover a regulatory cascade in budding yeast that consists of the hydrophilin protein Roq1/Yjl144w, the HtrA-type protease Ynm3/Nma111, and the ubiquitin ligase Ubr1. Various stresses stimulate ROQ1 transcription. The Roq1 protein is cleaved by Ynm3. Cleaved Roq1 interacts with Ubr1, transforming its substrate specificity. Altered substrate recognition by Ubr1 accelerates proteasomal degradation of misfolded as well as native proteins at the endoplasmic reticulum membrane and in the cytosol. We term this pathway stress-induced homeostatically regulated protein degradation (SHRED) and propose that it promotes physiological adaptation by reprogramming a key component of the quality control machinery
    corecore