412 research outputs found

    Time--Distance Helioseismology Data Analysis Pipeline for Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory (SDO/HMI) and Its Initial Results

    Get PDF
    The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time-distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented.Comment: Accepted by Solar Physics topical issue 'Solar Dynamics Observatory

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    The size of Selmer groups for the congruent number problem

    Get PDF
    The oldest problem in the theory of elliptic curves is to determine which positive integers D can be the common difference of a three term arithmetic progres-sion of squares of rational numbers. Such integers D are known as congruent numbers. Equivalently one may ask which elliptic curve

    Local Helioseismology of Sunspots: Current Status and Perspectives (Invited Review)

    Full text link
    Mechanisms of the formation and stability of sunspots are among the longest-standing and intriguing puzzles of solar physics and astrophysics. Sunspots are controlled by subsurface dynamics hidden from direct observations. Recently, substantial progress in our understanding of the physics of the turbulent magnetized plasma in strong-field regions has been made by using numerical simulations and local helioseismology. Both the simulations and helioseismic measurements are extremely challenging, but it becomes clear that the key to understanding the enigma of sunspots is a synergy between models and observations. Recent observations and radiative MHD numerical models have provided a convincing explanation to the Evershed flows in sunspot penumbrae. Also, they lead to the understanding of sunspots as self-organized magnetic structures in the turbulent plasma of the upper convection zone, which are maintained by a large-scale dynamics. Local helioseismic diagnostics of sunspots still have many uncertainties, some of which are discussed in this review. However, there have been significant achievements in resolving these uncertainties, verifying the basic results by new high-resolution observations, testing the helioseismic techniques by numerical simulations, and comparing results obtained by different methods. For instance, a recent analysis of helioseismology data from the Hinode space mission has successfully resolved several uncertainties and concerns (such as the inclined-field and phase-speed filtering effects) that might affect the inferences of the subsurface wave-speed structure of sunspots and the flow pattern. It becomes clear that for the understanding of the phenomenon of sunspots it is important to further improve the helioseismology methods and investigate the whole life cycle of active regions, from magnetic-flux emergence to dissipation.Comment: 34 pages, 18 figures, submitted to Solar Physic

    Advances in Global and Local Helioseismology: an Introductory Review

    Full text link
    Helioseismology studies the structure and dynamics of the Sun's interior by observing oscillations on the surface. These studies provide information about the physical processes that control the evolution and magnetic activity of the Sun. In recent years, helioseismology has made substantial progress towards the understanding of the physics of solar oscillations and the physical processes inside the Sun, thanks to observational, theoretical and modeling efforts. In addition to the global seismology of the Sun based on measurements of global oscillation modes, a new field of local helioseismology, which studies oscillation travel times and local frequency shifts, has been developed. It is capable of providing 3D images of the subsurface structures and flows. The basic principles, recent advances and perspectives of global and local helioseismology are reviewed in this article.Comment: 86 pages, 46 figures; "Pulsation of the Sun and Stars", Lecture Notes in Physics, Vol. 832, Rozelot, Jean-Pierre; Neiner, Coralie (Eds.), 201

    Portion Size: What We Know and What We Need to Know

    Get PDF
    There is increasing evidence that the portion sizes of many foods have increased and in a laboratory at least this increases the amount eaten. The conclusions are, however, limited by the complexity of the phenomenon. There is a need to consider meals freely chosen over a prolonged period when a range of foods of different energy densities are available. A range of factors will influence the size of the portion size chosen: amongst others packaging, labeling, advertising, and the unit size rather than portion size of the food item. The way portion size interacts with the multitude of factors that determine food intake needs to be established. In particular, the role of portion size on energy intake should be examined as many confounding variables exist and we must be clear that it is portion size that is the major problem. If the approach is to make a practical contribution, then methods of changing portion sizes will need to be developed. This may prove to be a problem in a free market, as it is to be expected that customers will resist the introduction of smaller portion sizes, given that value for money is an important motivator

    Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544

    Get PDF
    We describe a directed search for continuous gravitational waves in data from the sixth initial LIGO science run. The target was the nearby globular cluster NGC 6544 at a distance of ≈2.7 kpc. The search covered a broad band of frequencies along with first and second frequency derivatives for a fixed sky position. The search coherently integrated data from the two LIGO interferometers over a time span of 9.2 days using the matched-filtering F-statistic. We found no gravitational-wave signals and set 95% confidence upper limits as stringent as 6.0×10-25 on intrinsic strain and 8.5×10-6 on fiducial ellipticity. These values beat the indirect limits from energy conservation for stars with characteristic spin-down ages older than 300 years and are within the range of theoretical predictions for possible neutron-star ellipticities. An important feature of this search was use of a barycentric resampling algorithm which substantially reduced computational cost; this method is used extensively in searches of Advanced LIGO and Virgo detector data. © 2017 American Physical Society
    corecore