730 research outputs found

    Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO<sub>2</sub> exchanges

    Get PDF
    Air-sea CO2 exchanges and the partial pressure of CO2 were measured in surface water overlying 2 coral reefs: Moorea (French Polynesia, austral winter, August 1992), where coral diversity and surface cover are low, and Yonge Reef (Great Barrier Reef, austral summer, December 1993), where coral diversity and cover are comparatively higher. A procedure is proposed to estimate the potential CO2 exchange with the atmosphere by taking into account both the saturation level of oceanic seawater and the equilibration process occurring after water leaves the reef. It is shown that both sites were net sources of CO2 to the atmosphere as a result of the effect of calcification on the dynamics of the inorganic carbon system. The potential global CO2 evasion from the ocean to the atmosphere is about 4 times higher at Yonge Reef than at Moorea. It is also demonstrated that, at both sites, the major exchange of CO2 from sea to air occurs as seawater returns to chemical equilibrium after it has crossed and left the reef. The dynamics of inorganic carbon were studied using the so-called homogeneous buffer factor [beta = dln(pCO(2))/dln(DIC)] (where pCO(2) is the CO2 partial pressure in surface water and DIC is dissolved inorganic carbon), which gave estimates that approximately 80% of the change in inorganic carbon was related to photosynthesis and respiration. This approach showed that the calcification rate was proportional to the net organic production during the day and to the respiration rate at night

    Urban Seismic Site Characterization by Fiber‐Optic Seismology

    Full text link
    Accurate ground motion prediction requires detailed site effect assessment, but in urban areas where such assessments are most important, geotechnical surveys are difficult to perform, limiting their availability. Distributed acoustic sensing (DAS) offers an appealing alternative by repurposing existing fiber‐optic cables, normally employed for telecommunication, as an array of seismic sensors. We present a proof‐of‐concept demonstration by using DAS to produce high‐resolution maps of the shallow subsurface with the Stanford DAS array, California. We describe new methods and their assumptions to assess H/V spectral ratio—a technique widely used to estimate the natural frequency of the soil—and to extract Rayleigh wave dispersion curves from ambient seismic field. These measurements are jointly inverted to provide models of shallow seismic velocities and sediment thicknesses above bedrock in central campus. The good agreement with an independent survey validates the methodology and demonstrates the power of DAS for microzonation.Key PointsWe demonstrate the potential of DAS for site effect analysisDAS recordings are used to compute dispersion curves and horizontal‐to‐vertical spectral ratio (HVSR)Joint inversions suggest that the crystalline bedrock lies 115 m beneath Stanford University central campusPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154310/1/jgrb54043.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154310/2/jgrb54043-sup-0001-Text_SI-S01.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154310/3/jgrb54043_am.pd

    Spot-test identification and rapid quantitative sequential analysis of dipyrone

    Get PDF
    A qualitative spot-test and tandem quantitative analysis of dipyrone in the bulk drug and in pharmaceutical preparations is proposed. The formation of a reddish-violet color indicates a positive result. In sequence a quantitative procedure can be performed in the same flask. The quantitative results obtained were statistically compared with those obtained with the method indicated by the Brazilian Pharmacopoeia, using the Student's t and the F tests. Considering the concentration in a 100 µL aliquot, the qualitative visual limit of detection is about 5×10-6 g; instrumental LOD &#8773; 1.4×10-4 mol L-1 ; LOQ &#8773; 4.5×10-4 mol L-1.Um método spot-test qualitativo e seqüencialmente quantitativo é proposto para análise de dipirona em fármaco puro e em preparações farmacêuticas. A formação de coloração vermelho-violeta indica um resultado qualitativo positivo. Na seqüência, um procedimento quantitativo pode ser realizado no mesmo frasco. Os resultados quantitativos obtidos foram comparados estatisticamente com os resultados obtidos pelo método indicado pela Farmacopéia Brasileira, utilizando o teste t de Student e o teste F. Considerando a concentração em uma alíquota de 100 µL, o limite qualitativo visual de detecção foi de cerca 5×10-6 g; instrumentalmente o limite de detecção foi de LOD &#8773; 1.4×10-4 mol L-1 e o limite de quantificação de LOQ &#8773; 4.5×10-4 mol L-1.4146Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    2 years-long monitoring of <i>Codium elisabethae</i> population dynamics in the Azorian reef ecosystem (Faial Island) with seabed imagery

    Get PDF
    In the Site of Community Interest (Natura, 2000) of Monte-da-Guia (Faial, Azores), two sites were delimited in order to investigate particularly the links between habitat characteristics, population structure, distribution and dynamics of the green alga Codium elisabethae. The first site is a large protected rocky seafloor of an ancient volcano crater (20m deep) and classified as no-go reserve. It shows very high density stands of Codium elisabethae (up to 105 ind.m-2), representing the main vegetal biomass. At similar depth but distant of about two kilometers, the second site is in a more exposed area, where a sparse population (about 13 ind.m-2) occupies rocky tables and boulders emerging from shallow sandy deposits. These contrasting densities reflect different population dynamic equilibrium resulting from the particular environmental pressures of each site. A two year population survey started in August 2003, aiming principally at building submarine image mosaics of each site on a seasonal basis. Further, a computer assisted detection is run on the images to derive valuable information about the studied macroalgae. This technique allows to study a comparatively large zone regarding to the diving time invested so as to integrate spatial patchiness and to focus on the temporal evolution of well identified individuals. The imagery methodology was validated with in situ measurements, confirming the adequacy of the 1cm precision size histograms produced, when considering individuals larger than 5cm diameter. Seasonal fluctuations of growth rate (from 0.5 to 3cm.month-1) and primary production (from 1 to 15kg.m-².month-1) could be described. For both sites studied, density, biomass and cover rate seemed affected by a seasonal variation with reduction starting in end summer early autumn. In both sites, the reduction was sharp in the fall 2003 and population density didn’t recover completely in spring and summer 2004. During the following year, population of the protected site could maintain density and biomass, while population of the exposed site dropped continuously all year. Last processing step will search to relate statistically these different population evolutions to the benthic environmental constraints measured in both sites during the year 2004-2005 (temperature, currents, turbidity, photosynthetic active radiation, nutrients). Differences in hydrodynamic exposure of both sites could be part of the answer, but observed differences in the reproduction intensity of these two populations is an important factor, and remains unexplained
    corecore