132 research outputs found

    Revisiting the technical validation of tumour biomarker assays: how to open a Pandora's box

    Get PDF
    A tumour biomarker is a characteristic that is objectively measured and evaluated in tumour samples as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. The development of a biomarker contemplates distinct phases, including discovery by hypothesis-generating preclinical or exploratory studies, development and qualification of the assay for the identification of the biomarker in clinical samples, and validation of its clinical significance. Although guidelines for the development and validation of biomarkers are available, their implementation is challenging, owing to the diversity of biomarkers being developed. The term 'validation' undoubtedly has several meanings; however, in the context of biomarker research, a test may be considered valid if it is 'fit for purpose'. In the process of validation of a biomarker assay, a key point is the validation of the methodology. Here we discuss the challenges for the technical validation of immunohistochemical and gene expression assays to detect tumour biomarkers and provide suggestions of pragmatic solutions to address these challenges

    Low serum creatinine is associated with type 2 diabetes in morbidly obese women and men: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low skeletal muscle mass is associated with insulin resistance and metabolic syndrome. Serum creatinine may serve as a surrogate marker of muscle mass, and a possible relationship between low serum creatinine and type 2 diabetes has recently been demonstrated. We aimed to validate this finding in a population of Caucasian morbidly obese subjects.</p> <p>Methods</p> <p>Cross-sectional study of 1,017 consecutive morbidly obese patients with an estimated glomerular filtration rate >60 ml/min/1.73 m<sup>2</sup>. Logistic regression (univariate and multiple) was used to assess the association between serum creatinine and prevalent type 2 diabetes, including statistically testing for the possibility of non-linearity in the relationship by implementation of Generalized Additive Models (GAM) and piecewise linear regression. Possible confounding variables such as age, family history of diabetes, waist-to-hip ratio, hypertension, current smoking, serum magnesium, albuminuria and insulin resistance (log HOMA-IR) were adjusted for in three separate multiple logistic regression models.</p> <p>Results</p> <p>The unadjusted GAM analysis suggested a piecewise linear relationship between serum creatinine and diabetes. Each 1 μmol/l increase in serum creatinine was associated with 6% (95% CI; 3%-8%) and 7% (95% CI; 2%-13%) lower odds of diabetes below serum creatinine levels of 69 and 72 μmol/l in women and men, respectively. Above these breakpoints the serum creatinine concentrations did not reduce the odds further. Adjustments for non-modifiable and modifiable risk factors left the piecewise effect for both women and men largely unchanged. In the fully adjusted model, which includes serum magnesium, albuminuria and log HOMA-IR, the piecewise effect for men was statistically non-significant, but it remained present for women. Patients with creatinine levels below median had approximately 50% (women) and 75% (men) increased odds of diabetes.</p> <p>Conclusions</p> <p>Low serum creatinine is a predictor of type 2 diabetes in Caucasian morbidly obese patients, independent of age, gender, family history of diabetes, anthropometric measures, hypertension, and current smoking. Longitudinal studies of both obese and non-obese populations are needed to investigate whether serum creatinine may be causally linked with type 2 diabetes, and if so, precisely how they are linked.</p

    Accelerating Drug Development Using Biomarkers: A Case Study with Sitagliptin, A Novel DPP4 Inhibitor for Type 2 Diabetes

    Get PDF
    The leveraged use of biomarkers presents an opportunity in understanding target engagement and disease impact while accelerating drug development. For effective integration in drug development, it is essential for biomarkers to aid in the elucidation of mechanisms of action and disease progression. The recent years have witnessed significant progress in biomarker selection, validation, and qualification, while enabling surrogate and clinical endpoint qualification and application. Biomarkers play a central role in target validation for novel mechanisms. They also play a central role in the learning/confirming paradigm, particularly when utilized in concert with pharmacokinetic/pharmacodynamic modeling. Clearly, these attributes make biomarker integration attractive for scientific and regulatory applications to new drug development. In this review, applications of proximal, or target engagement, and distal, or disease-related, biomarkers are highlighted using the example of the recent development of sitagliptin for type 2 diabetes, wherein elucidation of target engagement and disease-related biomarkers significantly accelerated sitagliptin drug development. Importantly, use of biomarkers as tools facilitated design of clinical efficacy trials while streamlining dose focus and optimization, the net impact of which reduced overall cycle time to filing as compared to the industry average

    Lipoprotein associated phospholipase A2: role in atherosclerosis and utility as a biomarker for cardiovascular risk

    Get PDF
    Atherosclerosis and its clinical manifestations are widely prevalent throughout the world. Atherogenesis is highly complex and modulated by numerous genetic and environmental risk factors. A large body of basic scientific and clinical research supports the conclusion that inflammation plays a significant role in atherogenesis along the entire continuum of its progression. Inflammation adversely impacts intravascular lipid handling and metabolism, resulting in the development of macrophage foam cell, fatty streak, and atheromatous plaque formation. Given the enormous human and economic cost of myocardial infarction, ischemic stroke, peripheral arterial disease and amputation, and premature death and disability, considerable effort is being committed to refining our ability to correctly identify patients at heightened risk for atherosclerotic vascular disease and acute cardiovascular events so that they can be treated earlier and more aggressively. Serum markers of inflammation have emerged as an important component of risk factor burden. Lipoprotein-associated phospholipase A2 (Lp-PLA2) potentiates intravascular inflammation and atherosclerosis. A variety of epidemiologic studies support the utility of Lp-PLA2 measurements for estimating and further refining cardiovascular disease risk. Drug therapies to inhibit Lp-PLA2 are in development and show considerable promise, including darapladib, a specific molecular inhibitor of the enzyme. In addition to substantially inhibiting Lp-PLA2 activity, darapladib reduces progression of the necrotic core volume of human coronary artery atheromatous plaque. The growing body of evidence points to an important role and utility for Lp-PLA2 testing in preventive and personalized clinical medicine

    Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine

    Get PDF
    In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown

    Biomarker candidates of neurodegeneration in Parkinson’s disease for the evaluation of disease-modifying therapeutics

    Get PDF
    Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinson’s disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of α-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies
    corecore